Neural network robust \(H_\infty\) tracking control strategy for robot manipulators. (English) Zbl 1193.93094

Summary: A novel neural-network-based robust \(H_\infty \) control (NNRHC) strategy is proposed for the trajectory following problem of robot manipulators. The proposed system is comprised of a computed torque controller, a variable structure slide (VSS) controller and a neural network robust controller. Based on Lyapunov stability theorem, it is shown that the proposed controller can guarantee \(H_\infty \) tracking performance of robotic system, in the sense that all variables of the closed-loop system are bounded and the effect due to the external disturbance on the tracking error can be attenuated to any pre-assigned level. The proposed approach indicates that computed torque control method is also valid for controlling robot manipulators with uncertainties as long as a compensative controller is appropriately designed. Both simulation and experimental results show the superior control performance of the proposed neural control method.


93B36 \(H^\infty\)-control
93C85 Automated systems (robots, etc.) in control theory
Full Text: DOI


[1] Pourboghrat, F.; Karlsson, P., Adaptive control of dynamic mobile robots with nonholonomic constraints, Comput. elect. eng., 28, 3, 241-253, (2002) · Zbl 1112.93330
[2] Labiod, S.; Boucherit, M.; Guerra, T., Adaptive fuzzy control of a class of MIMO nonlinear systems, Fuzzy sets syst., 151, 3, 59-77, (2005) · Zbl 1142.93365
[3] Lee, K.; Khalil, H., Adaptive output feedback control of robot manipulators using high-gain observer, Int. J. cont., 67, 6, 869-886, (1997) · Zbl 0881.93049
[4] Decarlo, R.; Zak, S.; Matthews, G., Variable structure control of nonlinear multivariable systems: a tutorial, Proc. IEEE, 76, 3, 212-232, (1988)
[5] Stepanenko, Y.; Cao, Y.; Chun, S., Variable structure control of robotic manipulator with PID sliding surfaces, Int. J. robot. nonlinear cont., 8, 2, 79-90, (1998) · Zbl 0903.93015
[6] Elshafei, A.; Karray, F., Variable structure based fuzzy logic identification of a class of nonlinear systems, IEEE trans. cont. syst. tech., 13, 4, 646-653, (2005)
[7] Kwan, C.; Lewis, F., Robust baskstepping control of nonlinear systems using neural networks, IEEE trans. syst. man cyber., 30, 6, 753-766, (2005)
[8] Lee, G.; Cheng, F., Robust control of manipulators using the computed torque plus \(H_\infty\) compensation method, IEE proc. cont. theory appl., 143, 1, 64-72, (1996) · Zbl 0850.93538
[9] Hsiao, F.; Hwang, J.; Chen, C.; Tsai, Z., Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control, IEEE trans. fuzzy syst., 13, 1, 152-163, (2005)
[10] Slotine, J.; Li, W., Applied nonlinear control, (1991), Prentice-Hall NJ
[11] Sanner, R.M.; Slotine, J.J.E., Gaussian networks for direct adaptive control, IEEE trans. neural netw., 3, 4, 837-863, (1992)
[12] Hornik, K.; Stinchcombe, M.; Parthasarathy, K., Multilayer feedforward networks are universal approximations, Neural netw., 2, 4, 359-366, (1989) · Zbl 1383.92015
[13] Chen, M.; Jiang, C.; Wu, Q., Backstepping control for a class of uncertain nonlinear systems with neural network, Int. J. nonlinear sci., 2, 3, 137-143, (2007) · Zbl 1394.93075
[14] Barambones, O.; Etxebarria, V., Robust neural control for robotic manipulator, Automatica, 38, 3, 235-242, (2002) · Zbl 0991.93080
[15] Wai, R., Hybrid fuzzy neural-network control for nonlinear motor-toggle servomechanism, IEEE trans. cont. syst. tech., 10, 4, 519-532, (2002)
[16] Behera, L.; Chaudhury, S.; Gopal, M., Neuro-adaptive hybrid controller for robot manipulator tracking control, IEE proc. cont. theory appl., 143, 4, 270-275, (1996) · Zbl 0850.93539
[17] Chang, Y.; Chen, B., A nonlinear adaptive \(H_\infty\) tracking control design in robotic systems via neural networks, IEEE trans. cont. syst. tech., 5, 2, 13-29, (1997)
[18] Kim, Y.; Lewis, E., Neural network output feedback control of robot manipulators, IEEE trans. robot. autom., 15, 2, 301-309, (1999)
[19] Kim, Y.; Lewis, E., \(H_\infty\) tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach, IEEE trans. syst. man cyber., 32, 4, 483-492, (2002)
[20] Kung, C.; Chen, T., \(H_\infty\) tracking-based adaptive fuzzy sliding mode controller design for nonlinear systems, IEE cont. theory appl., 1, 1, 82-89, (2007)
[21] Shen, T.; Tamura, K., Robust \(H_\infty\) control of uncertain nonlinear system via state feedback, IEEE trans. autom. cont., 40, 5, 766-768, (1995) · Zbl 0827.93021
[22] Xie, L.; Su, W., Robust \(H_\infty\) control for a class of cascaded nonlinear systems, IEEE trans. autom. cont., 42, 11, 1465-1469, (1997) · Zbl 0891.93029
[23] Yi, S.; Chung, M., A robust fuzzy logic controller for robot manipulators with uncertainties, IEEE trans. syst. man cyber., 27, 4, 706-713, (1997)
[24] Murray, R.; Goodwin, G., Adaptive computed torque control for rigid link manipulators, Syst. cont. lett., 10, 4, 9-16, (1988) · Zbl 0636.93051
[25] Sciavicco, L.; Siciliano, B., Modelling and control of robot manipulators, (2001), Springer · Zbl 0944.70001
[26] Richard, M.; Li, Z.; Sastry, S., A mathematical introduction to robotic manipulation, (1994), CRC Press · Zbl 0858.70001
[27] Khalil, H., Adaptive output feedback control of nonlinear systems represented by input – output models, IEEE trans. autom. cont., 41, 3, 177-188, (1996) · Zbl 0842.93033
[28] Yu, H.; Seneviratne, D.; Earles, S., Exponentially stable robust control law for robot manipulators, IEE proc. cont. theory appl., 141, 6, 389-395, (1994) · Zbl 0800.93833
[29] Lewis, F.; Liu, K.; Yesildirek, A., Neural net robot controller with guaranteed tracking performance, IEEE trans. neural netw., 6, 2, 703-715, (1995)
[30] Keigo, W.; Kiyotaka, I.; Takaaki, O., A nonlinear robust control using a fuzzy reasoning and its application to a robot manipulator, J. intell. robot. syst., 20, 2, 275-294, (1997)
[31] Yeong, Y.; Lewis, F., Neural-network predictive control for nonlinear dynamic systems with time-delay, IEEE trans. neural netw., 14, 2, 377-389, (2003)
[32] Park, J.; Chung, W., Design of a robust \(H_\infty\) PID control for industrial manipulators, J. dyn. syst. meas. cont., 122, 4, 803-812, (2000)
[33] L. Acho, Y. Orlov, L. Aguilar, Global \(H_\infty\) control design for tracking control of robot manipulators, in: Proceedings of the American Control Conference, Anchorage, Alaska, 2002, pp. 3986-3990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.