×

An interval-valued rough intuitionistic fuzzy set model. (English) Zbl 1193.93129

Summary: Rough set theory is a powerful tool for dealing with uncertainty, granuality and incompleteness of knowledge in information systems. This paper presents an interval-valued rough Intuitionistic Fuzzy (IF) set model by means of integrating the classical Pawlak rough set theory with the interval-valued IF set theory. In this paper, we first introduce some concepts and properties of interval-valued IF set theory. Then, the rough approximations of an interval-valued IF set in the classical Pawlak approximation space and the generalised Pawlak approximation space are respectively defined, and some fundamental properties of the approximation operators are studied. Furthermore, by employing cut sets of interval-valued IF sets, classical representations of interval-valued rough IF approximation operators are presented, and the connections between special binary relations and interval-valued rough IF approximation operators are constructed. Finally, we discuss the knowledge reduction and knowledge discovery of the interval-valued IF information systems.

MSC:

93C42 Fuzzy control/observation systems
93A10 General systems
93C41 Control/observation systems with incomplete information
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/S0165-0114(86)80034-3 · Zbl 0631.03040
[2] DOI: 10.1016/0165-0114(94)90331-X · Zbl 0844.04001
[3] DOI: 10.1016/0165-0114(89)90205-4 · Zbl 0674.03017
[4] DOI: 10.1080/03081070008960961 · Zbl 0955.03056
[5] Burillo P., Comptes Rendus De L’Acamdemie Bulgare Des Sciences 47 pp 9– (1994)
[6] Burillo P., Comptes Rendus De L’Acamdemie Bulgare Des Sciences 48 pp 17– (1995)
[7] Burillo P., Notes on intuitionistic fuzzy sets 1 pp 5– (1995)
[8] DOI: 10.1016/0165-0114(94)00343-6 · Zbl 0875.94156
[9] Chakrabarty, K., Gedeon, T. and Koczy, L. Intuitionistic fuzzy rough set. Proceedings of fourth joint conference on information sciences (JCIS). pp.211–214. Durham, NC
[10] DOI: 10.1016/j.ins.2007.02.041 · Zbl 1122.68131
[11] DOI: 10.1111/1468-0394.00250 · Zbl 05653442
[12] DOI: 10.1016/j.ins.2006.11.005 · Zbl 1121.03074
[13] DOI: 10.1080/03081079008935107 · Zbl 0715.04006
[14] DOI: 10.1016/j.ins.2007.12.005 · Zbl 1138.68564
[15] DOI: 10.1002/int.10014 · Zbl 0997.68135
[16] DOI: 10.1016/j.fss.2005.05.023 · Zbl 1084.03042
[17] DOI: 10.1016/S0165-0114(96)00311-9 · Zbl 0924.04002
[18] DOI: 10.1016/S0020-0255(02)00181-0 · Zbl 1013.03067
[19] Jena S.P., Notes on intuitionistic fuzzy sets 8 pp 1– (2002)
[20] Liu X.D., Lecture notes in computer science 3613 pp 1611– (2005)
[21] DOI: 10.1016/S0165-0114(98)00436-9 · Zbl 0987.03049
[22] DOI: 10.1016/S0165-0114(97)00104-8 · Zbl 0938.03085
[23] DOI: 10.1007/BF01001956 · Zbl 0501.68053
[24] DOI: 10.1016/S0165-0114(01)00032-X · Zbl 1004.03043
[25] Samanta S.K., Journal of fuzzy mathematics 9 pp 561– (2001)
[26] DOI: 10.1109/69.842271 · Zbl 05108848
[27] DOI: 10.1016/j.ins.2008.03.001 · Zbl 1149.68434
[28] DOI: 10.1016/j.ins.2009.05.001 · Zbl 1170.90427
[29] DOI: 10.1016/S0020-0255(02)00180-9 · Zbl 1019.68109
[30] DOI: 10.1016/S0020-0255(02)00379-1 · Zbl 1019.03037
[31] DOI: 10.1016/j.ins.2003.08.005 · Zbl 1071.68095
[32] DOI: 10.1016/j.fss.2005.02.011 · Zbl 1074.03027
[33] DOI: 10.1016/j.ins.2006.12.019 · Zbl 1286.91043
[34] Xu Z.S., Journal of southeast university 23 pp 139– (2007)
[35] DOI: 10.1016/S1874-8651(08)60026-5
[36] DOI: 10.1016/j.ijar.2007.08.008 · Zbl 1185.91073
[37] DOI: 10.1016/S0020-0255(98)00012-7 · Zbl 0934.03071
[38] DOI: 10.1016/S0020-0255(98)10006-3 · Zbl 0949.68144
[39] DOI: 10.1016/j.eswa.2008.08.042
[40] DOI: 10.1016/S0019-9958(65)90241-X · Zbl 0139.24606
[41] DOI: 10.1016/0020-0255(75)90036-5 · Zbl 0397.68071
[42] Zhou L., Information sciences 178 pp 2448– (2008)
[43] DOI: 10.1016/j.ins.2008.11.015 · Zbl 1162.03317
[44] DOI: 10.1016/j.ins.2009.02.013 · Zbl 1178.68579
[45] DOI: 10.1109/TKDE.2007.1044 · Zbl 05340316
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.