×

zbMATH — the first resource for mathematics

Testing for nonlinearity in time series: the method of surrogate data. (English) Zbl 1194.37144
Summary: We describe a statistical approach for identifying nonlinearity in time series. The method first specifies some linear process as a null hypothesis, then generates surrogate data sets which are consistent with this null hypothesis, and finally computes a discriminating statistic for the original and for each of the surrogate data sets. If the value computed for the original data is significantly different than the ensemble of values computed for the surrogate data, then the null hypothesis is rejected and nonlinearity is detected. We discuss various null hypotheses and discriminating statistics. The method is demonstrated for numerical data generated by known chaotic systems, and applied to a number of experimental time series which arise in the measurement of superfluids, brain waves, and sunspots; we evaluate the statistical significance of the evidence for nonlinear structure in each case, and illustrate aspects of the data which this approach identifies.

MSC:
37M10 Time series analysis of dynamical systems
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nicolis, C.; Nicolis, G., Nature, 311, 529, (1984)
[2] Grassberger, P., Nature, 323, 609, (1986)
[3] Nicolis, C.; Nicolis, G., Nature, 326, 523, (1987)
[4] Grassberger, P., Nature, 326, 524, (1987)
[5] Osborne, A.R.; Kirwin, A.D.; Provenzale, A.; Bergamasco, L., Physica D, 23, 75, (1986)
[6] Mayer-Kress, G., (), 122-147
[7] Osborne, A.R.; Provenzale, A., Physica D, 35, 357, (1989)
[8] Provenzale, A.; Osborne, A.R.; Soj, R., Physica D, 47, 361, (1991)
[9] Theiler, J., Phys. lett. A, 155, 480, (1991)
[10] Ramsey, J.B.; Yuan, J.-J., Phys. lett. A, 134, 287, (1989)
[11] Theiler, J., Phys. rev. A, 41, 3038, (1990)
[12] Takens, F., Dynamical systems and bifurcations, (), 99-106, (1984), Groningen
[13] Caswell, W.E.; Yorke, J.A., Dimensions and entropies in chaotic systems - quantification of complex behavior, (), 123-136
[14] Holzfuss, J.; Mayer-Kress, G., Dimensions and entropies in chaotic systems - quantification of complex behavior, (), 114-122
[15] Theiler, J., Quantifying chaos: practical estimation of the correlation dimension, ()
[16] Möller, M.; Lange, W.; Mitschke, F.; Abraham, N.B.; Hübner, U., Phys. lett. A, 138, 176, (1989)
[17] Theiler, J., J. opt. soc. am. A, 7, 1055, (1990)
[18] Smith, R.L., Nonlinear modeling and forecasting, (), 115-136
[19] Theiler, J.; Galdrikian, B.; Longtin, A.; Eubank, S.; Farmer, J.D., Nonlinear modeling and forecasting, (), 163-188
[20] Subba Rao, T.; Gabr, M.M., J. time series anal., 1, 145, (1980) · Zbl 0499.62078
[21] Hinich, M.J., J. time series anal., 3, 169, (1982)
[22] McLeod, A.I.; Li, W.K., J. time series anal., 4, 269, (1983) · Zbl 0536.62067
[23] Keenan, D.M., Biometrika, 72, 39, (1985)
[24] Tsay, R.S., Biometrika, 73, 461, (1986)
[25] Tsay, R.S., Stat. sin., 1, 431, (1991)
[26] Tong, H., Non-linear time series: A dynamical system approach, (1990), Clarendon Press Oxford
[27] Efron, B., SIAM rev., 21, 460, (1979)
[28] Tsay, R.S., Appl. stat., 41, 1, (1992)
[29] Scheinkman, J.A.; LeBaron, B., J. business, 62, 311, (1989)
[30] Breeden, J.L.; Packard, N.H., Nonlinear analysis of data sampled nonuniformly in time, Physica D, 58, 273, (1992), these Proceedings
[31] Uhlenbeck, G.F.; Ornstein, L.S., (), 36, 823, (1930), reprinted in:
[32] Kaplan, D.T.; Cohen, R.J., Circulation res., 67, 886, (1990)
[33] Brock, W.A.; Dechert, W.D.; Scheinkman, J., A test for independence based on the correlation dimension, (1986), Social Systems Research Institute, University of Wisconsin at Madison, technical report 8702 · Zbl 0893.62034
[34] T.-H. Lee, H. White and C.W.J. Granger, Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests J. Econometrics, to appear. · Zbl 0766.62055
[35] Kostelich, E.J.; Swinney, H.L., (), 141
[36] Theiler, J., Phys. rev. A, 36, 4456, (1987)
[37] Grassberger, P., Phys. lett. A, 148, 63, (1990)
[38] Grassberger, P.; Procaccia, I., Phys. rev. lett., 50, 346, (1983)
[39] Grassberger, P.; Procaccia, I., Physica D, 9, 189, (1983)
[40] Takens, F., Invariants related to dimension and entropy, Atas do 13° colóqkio brasiliero de matemática, (1983) · Zbl 0532.58017
[41] Ellner, S., Phys. lett. A, 133, 128, (1988)
[42] Farmer, J.D.; Sidorowich, J.J., (), 277-330
[43] Casdagli, M., (), 131
[44] Casdagli, M., Chaos and deterministic versus stochastic nonlinear modeling, J. R. stat. soc. B, 54, 303, (1992)
[45] Sano, M.; Sawada, Y., Phys. rev. lett., 55, 1082, (1985)
[46] Eckmann, J.-P.; Ruelle, D., Rev. mod. phys., 57, 617, (1985)
[47] Eckmann, J.-P.; Kamphorst, S.O.; Ruelle, D.; Ciliberto, S., Phys. rev. A, 34, 4971, (1986)
[48] Ellner, S.; Gallant, A.R.; McCaffrey, D.; Nychka, D., Phys. lett. A, 153, 357, (1991)
[49] D. McCaffrey, S. Ellner, A.R. Gallant and D. Nychka, Estimating the Lyapunov exponent of a chaotic system with nonparametric regression, J. Am. Stat. Assoc., to appear. · Zbl 0782.62045
[50] Nychka, D.; Ellner, S.; McCaffrey, D.; Gallant, A.R., J. R. stat. soc. B, 54, 399, (1992)
[51] Schreiber, T.; Grassberger, P., Phys. lett. A, 160, 411, (1991)
[52] W.A. Brock, J. Lakonishok and B. LeBaron, Simple technical trading rules and the stochastic properties of stock returns, J. Finance, to appear.
[53] Blackman, R.B.; Tukey, J.W., The measurement of power spectra, (1959), Dover New York · Zbl 0084.21703
[54] Hénon, M., Commun. math. phys., 50, 69, (1976)
[55] Mackey, M.C.; Glass, L., Science, 197, 287, (1977)
[56] Theiler, J., Phys. rev. A, 34, 2427, (1986)
[57] Haucke, H.; Ecke, R., Physica D, 25, 307, (1987)
[58] Rapp, P.E.; Zimmerman, I.D.; Albano, A.M.; de Guzman, G.C.; Greenbaum, N.N.; Bashore, T.R., (), 175-205
[59] Rapp, P.E.; Bashore, T.R.; Martinerie, J.M.; Albano, A.M.; Zimmerman, I.D.; Mees, A.I., Brain topography, 2, 99, (1989)
[60] Yule, G.U., Philos. trans. R. soc. London A, 226, 267, (1927)
[61] Tong, H.; Lim, K.S., J. R. stat. soc. B, 42, 245, (1980)
[62] Weiss, N.O., Phil. trans. R. soc. London A, 330, 617, (1990)
[63] Kurths, J.; Ruzmaikin, A.A., Solar phys., 126, 407, (1990)
[64] Weigend, A.; Huberman, B.; Rummelhart, D., Intern. J. neural systems, 1, 193, (1990)
[65] Mundt, M.; Maguire, W.B.; Chase, R.B.P., J. geophys. res., 96, 1705, (1991)
[66] Weigend, A.; Huberman, B.A.; Rummelhart, D.E., Predicting sunspots and exchange rates with connectionist networks, (), 397-434
[67] L. Smith, Identification and prediction of deterministic dynamical systems, this volume.
[68] Ellner, S., Detecting low-dimensional chaos in population dynamics data: a critical review, (), 65-92
[69] Brock, W.A.; Sayers, C.L., J. monetary econ., 22, 71, (1988)
[70] Brock, W.A.; Dechert, W.D., Statistical inference theory for measures of complexity in chaos theory and nonlinear science, (), 79-98
[71] Brock, W.A.; Potter, S.M., Nonlinear modeling and forecasting, (), 137-162
[72] Hsieh, D.A., J. business, 62, 339, (1989)
[73] Hsieh, D.A., J. finance, 46, 1839, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.