×

On a generalized max-type difference equation from automatic control theory. (English) Zbl 1194.39007

The boundedness character of positive solutions of the difference equation of the form
\[ x_{n+1}=\max\left\{A,\frac{x_n^p}{x_{n-1}^qx_{n-2}^r}\right\},\quad n\in\mathbb N_0, \]
is studied.

MSC:

39A20 Multiplicative and other generalized difference equations
39A22 Growth, boundedness, comparison of solutions to difference equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Berenhaut, K.; Foley, J.; Stević, S., Boundedness character of positive solutions of a MAX difference equation, J. difference equ. appl., 12, 12, 1193-1199, (2006) · Zbl 1116.39001
[2] Berezansky, L.; Braverman, E., On impulsive beverton – holt difference equations and their applications, J. difference equ. appl., 10, 9, 851-868, (2004) · Zbl 1068.39005
[3] Berg, L., On the asymptotics of nonlinear difference equations, Z. anal. anwendungen, 21, 4, 1061-1074, (2002) · Zbl 1030.39006
[4] Berg, L.; Stević, S., Linear difference equations mod 2 with applications to nonlinear difference equations, J. difference equ. appl., 14, 7, 693-704, (2008) · Zbl 1156.39003
[5] Çinar, C.; Stević, S.; Yalçinkaya, I., On positive solutions of a reciprocal difference equation with minimum, J. appl. math. & comput., 17, 1-2, 307-314, (2005) · Zbl 1074.39002
[6] De la Sen, M., About the properties of a modified generalized beverton – holt equation in ecology models, Discrete dyn. nat. soc., 2008, (2008), Article ID 592950, 23 pages · Zbl 1148.92031
[7] De la Sen, M.; Alonso-Quesada, S., A control theory point of view on beverton – holt equation in population dynamics and some of its generalizations, Appl. math. comput., 199, 2, 464-481, (2008) · Zbl 1137.92034
[8] De la Sen, M.; Alonso-Quesada, S., Model-matching-based control of the beverton – holt equation in ecology, Discrete dyn. nat. soc., 2008, (2008), Article ID 793512, 21 pages · Zbl 1149.92029
[9] Elsayed, E.M.; Stević, S., On the MAX-type equation \(x_{n + 1} = \max \{A / x_n, x_{n - 2} \}\), Nonlinear anal. TMA, 71, 910-922, (2009) · Zbl 1169.39003
[10] Feuer, J., On the eventual periodicity of \(x_{n + 1} = \max \{1 / x_n, A_n / x_{n - 1} \}\) with a period-four parameter, J. difference equ. appl., 12, 5, 467-486, (2006) · Zbl 1095.39016
[11] Grove, E.A.; Ladas, G., Periodicities in nonlinear difference equations, (2005), Chapman & Hall, CRC Press · Zbl 1078.39009
[12] Hu, H., One recursion formula of second-order recurrent sequences, Ars combin., 88, 195-200, (2008)
[13] Iričanin, B., A global convergence result for a higher-order difference equation, Discrete dyn. nat. soc., 2007, (2007), Article ID 91292, 7 pages · Zbl 1180.39003
[14] Iričanin, B., Dynamics of a class of higher order difference equations, Discrete dyn. nat. soc., 2007, (2007), Article ID 73849, 6 pages · Zbl 1152.39005
[15] Karakostas, G.L., Convergence of a difference equation via the full limiting sequences method, Differ. equ. dyn. syst., 1, 4, 289-294, (1993) · Zbl 0868.39002
[16] Massegú, J.R., On the global periodicity of discrete dynamical systems and application to rational difference equations, J. math. anal. appl., 343, 1, 182-189, (2008) · Zbl 1152.39008
[17] Mishev, D.; Patula, W.T.; Voulov, H.D., A reciprocal difference equation with maximum, Comput. math. appl., 43, 1021-1026, (2002) · Zbl 1050.39015
[18] Mishkis, A.D., On some problems of the theory of differential equations with deviating argument, Uspekhi mat. nauk, 32:2, 194, 173-202, (1977)
[19] Patula, W.T.; Voulov, H.D., On a MAX type recurrence relation with periodic coefficients, J. difference equ. appl., 10, 3, 329-338, (2004) · Zbl 1050.39017
[20] Pielou, E.C., Population and community ecology, (1974), Gordon and Breach · Zbl 0349.92024
[21] Popov, E.P., Automatic regulation and control, (1966), Nauka Moscow, Russia, (in Russian)
[22] Stević, S., Behaviour of the positive solutions of the generalized beddington – holt equation, Panamer. math. J., 10, 4, 77-85, (2000) · Zbl 1039.39005
[23] Stević, S., Asymptotic behaviour of a sequence defined by iteration with applications, Colloq. math., 93, 2, 267-276, (2002) · Zbl 1029.39006
[24] Stević, S., Asymptotic behaviour of a nonlinear difference equation, Indian J. pure appl. math., 34, 12, 1681-1687, (2003) · Zbl 1049.39012
[25] Stević, S., On the recursive sequence \(x_{n + 1} = (A / \prod_{i = 0}^k x_{n - i}) +(1 / \prod_{j = k + 2}^{2(k + 1)} x_{n - j})\), Taiwanese J. math., 7, 2, 249-259, (2003)
[26] S. Stević, Some open problems and conjectures on difference equations. http://www.mi.sanu.ac.yu/colloquiums/mathcoll_programs/mathcoll.apr2004.htm
[27] Stević, S., On the recursive sequence \(x_{n + 1} = (\alpha + \beta x_{n - k}) / f(x_n, \ldots, x_{n - k + 1})\), Taiwanese J. math., 9, 4, 583-593, (2005) · Zbl 1100.39014
[28] Stević, S., A short proof of the cushing – henson conjecture, Discrete dyn. nat. soc., 2006, (2006), Article ID 37264, 5 pages · Zbl 1149.39300
[29] Stević, S., Asymptotic behaviour of a class of nonlinear difference equations, Discrete dyn. nat. soc., (2006), Article ID 47156, 10 pages
[30] Stević, S., On positive solutions of a \((k + 1)\)-th order difference equation, Appl. math. lett., 19, 5, 427-431, (2006) · Zbl 1095.39010
[31] Stević, S., Asymptotics of some classes of higher order difference equations, Discrete dyn. nat. soc., 2007, (2007), Article ID 56813, 20 pages · Zbl 1180.39009
[32] S. Stević, Boundedness character of a max-type difference equation, in: Conference in Honour of Allan Peterson, Book of Abstracts, Novacella, Italy, July 26 - August 02, 2007, p. 28
[33] Stević, S., On the recursive sequence \(x_n = 1 +(\sum_{i = 1}^k \alpha_i x_{n - p_i} / \sum_{j = 1}^m \beta_j x_{n - q_j})\), Discrete dyn. nat. soc., 2007, (2007), Article ID 39404, 7 pages
[34] Stević, S., Boundedness and global stability of a higher-order difference equation, J. difference equ. appl., 14, 10-11, 1035-1044, (2008) · Zbl 1161.39011
[35] S. Stević, On behavior of a class of difference equations with maximum, in: Mathematical Models in Engineering, Biology and Medicine (Conference on Boundary Value Problems. Book of abstracts). Santiago de Compostela, Spain, September 16-19, 2008, p. 35
[36] Stević, S., On the difference equation \(x_{n + 1} = \alpha +(x_{n - 1} / x_n)\),, Comput. math. appl., 56, 5, 1159-1171, (2008) · Zbl 1155.39305
[37] Stević, S., On the recursive sequence \(x_{n + 1} = \max \{c, x_n^p / x_{n - 1}^p \}\), Appl. math. lett., 21, 8, 791-796, (2008) · Zbl 1152.39012
[38] S. Stević, Some results on max-type difference equations, The Modelling of Nonlinear Processes and Systems (International Science Conference. Book of abstracts. Moscow), Russia, October 14-18, 2008, p. 140
[39] Stević, S., Boundedness character of a class of difference equations, Nonlinear anal. TMA, 70, 839-848, (2009) · Zbl 1162.39011
[40] Stević, S., Global stability of a difference equation with maximum, Appl. math. comput., 210, 525-529, (2009) · Zbl 1167.39007
[41] Szalkai, I., On the periodicity of the sequence \(x_{n + 1} = \max \{A_0 / x_n, \ldots, A_k / x_{n - k} \}\), J. difference equ. appl., 5, 25-29, (1999) · Zbl 0930.39011
[42] Sun, F., On the asymptotic behavior of a difference equation with maximum, Discrete dyn. nat. soc., 2008, (2008), Article ID 243291, 6 pages
[43] Voulov, H.D., On the periodic nature of the solutions of the reciprocal difference equation with maximum, J. math. anal. appl., 296, 1, 32-43, (2004) · Zbl 1053.39023
[44] Voulov, H.D., On a difference equation with periodic coefficients, J. difference equ. appl., 13, 5, 443-452, (2007) · Zbl 1121.39011
[45] Yalçinkaya, I.; Iričanin, B.D.; Çinar, C., On a MAX-type difference equation, Discrete dyn. nat. soc., 2007, (2007), Article ID 47264, 11 pages · Zbl 1152.39016
[46] Yang, X.; Sun, F.; Tang, Y.Y., A new part-metric-related inequality chain and an application, Discrete dyn. nat. soc., 2008, (2008), Article ID 193872, 7 pages
[47] Yang, Y.; Yang, X., On the diference equation \(x_{n + 1} = (p x_{n - s} + x_{n - t}) /(q x_{n - s} + x_{n - t})\), Appl. math. comput., 203, 2, 903-907, (2008) · Zbl 1162.39015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.