zbMATH — the first resource for mathematics

A higher-order graph calculus for autonomic computing. (English) Zbl 1194.68117
Lipshteyn, Marina (ed.) et al., Graph theory, computational intelligence and thought. Essays dedicated to Martin Charles Golumbic on the occasion of his 60th birthday. Berlin: Springer (ISBN 978-3-642-02028-5/pbk). Lecture Notes in Computer Science 5420, 15-26 (2009).
Summary: In this paper, we present a high-level formalism based on port graph rewriting, strategic rewriting, and rewriting calculus. We argue that this formalism is suitable for modeling autonomic systems and briefly illustrate its expressivity for modeling properties of such systems.
For the entire collection see [Zbl 1178.68012].

68Q10 Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.)
68Q42 Grammars and rewriting systems
68R10 Graph theory (including graph drawing) in computer science
HOCL; MGS; Stratego; Tom
Full Text: DOI
[1] Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer 36(1), 41–50 (2003) · Zbl 05087044 · doi:10.1109/MC.2003.1160055
[2] Cardelli, L.: Brane Calculi. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005) · Zbl 1088.68657 · doi:10.1007/978-3-540-25974-9_24
[3] Danos, V., Pradalier, S.: Projective Brane Calculus. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg (2005) · Zbl 1088.68659 · doi:10.1007/978-3-540-25974-9_11
[4] Paun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002) · doi:10.1007/978-3-642-56196-2
[5] Milner, R.: Pure bigraphs: Structure and dynamics. Inf. Comput. 204(1), 60–122 (2006) · Zbl 1093.68067 · doi:10.1016/j.ic.2005.07.003
[6] Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.Y.: BioAmbients: an abstraction for biological compartments. TCS 325(1), 141–167 (2004) · Zbl 1069.68569 · doi:10.1016/j.tcs.2004.03.061
[7] Chabrier-Rivier, N., Fages, F., Soliman, S.: The Biochemical Abstract Machine BIOCHAM. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005) · Zbl 1088.68817 · doi:10.1007/978-3-540-25974-9_14
[8] Laneve, C., Tarissan, F.: A simple calculus for proteins and cells. ENTCS 171(2), 139–154 (2007) · Zbl 1277.68195
[9] Banatre, J.P., Metayer, D.L.: A new computational model and its discipline of programming. Technical Report RR-566, INRIA (1986)
[10] Banâtre, J.P., Fradet, P., Radenac, Y.: A Generalized Higher-Order Chemical Computation Model. ENTCS 135(3), 3–13 (2006) · Zbl 1272.68126
[11] Banâtre, J.P., Fradet, P., Radenac, Y.: Programming Self-Organizing Systems with the Higher-Order Chemical Language. International Journal of Unconventional Computing 3(3), 161–177 (2007)
[12] Giavitto, J.L., Michel, O.: MGS: a Rule-Based Programming Language for Complex Objects and Collections. Electronic Notes in Theoretical Computer Science 59(4) (2001) · Zbl 1268.68041 · doi:10.1016/S1571-0661(04)00293-2
[13] Chakravarti, A.J., Baumgartner, G., Lauria, M.: Application-Specific Scheduling for the Organic Grid. In: Buyya, R. (ed.) GRID, pp. 146–155. IEEE Computer Society, Los Alamitos (2004)
[14] Andrei, O., Kirchner, H.: A Rewriting Calculus for Multigraphs with Ports. In: Proceedings of RULE 2007, International Workshop on Rule-Based Programming. Electronic Notes in Theoretical Computer Science, vol. 219, pp. 67–82, November 20 (2007)
[15] Andrei, O., Kirchner, H.: Graph Rewriting and Strategies for Modeling Biochemical Networks. In: SYNASC 2007, pp. 407–414. IEEE Computer Society, Los Alamitos (2007)
[16] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout Approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 163–246. World Scientific, Singapore (1997) · doi:10.1142/9789812384720_0003
[17] Banâtre, J.P., Radenac, Y., Fradet, P.: Chemical Specification of Autonomic Systems. In: IASSE 2004, pp. 72–79. ISCA (2004)
[18] Kirchner, C., Kirchner, F., Kirchner, H.: Strategic computations and deductions. In: Festchrift in honor of Peter Andrews. Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam (2008) · Zbl 1226.03027
[19] Borovanský, P., Kirchner, C., Kirchner, H., Ringeissen, C.: Rewriting with strategies in ELAN: a functional semantics. Int. J. Found. Comput. Sci. 12(1), 69–98 (2001) · Zbl 1319.68125 · doi:10.1142/S0129054101000412
[20] Visser, E.: Stratego: A Language for Program Transformation based on Rewriting Strategies. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 357–361. Springer, Heidelberg (2001) · Zbl 0981.68679 · doi:10.1007/3-540-45127-7_27
[21] Balland, E., Brauner, P., Kopetz, R., Moreau, P.E., Reilles, A.: Tom: Piggybacking rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47. Springer, Heidelberg (2007) · Zbl 05222802 · doi:10.1007/978-3-540-73449-9_5
[22] Martí-Oliet, N., Meseguer, J., Verdejo, A.: A Rewriting Semantics for Maude Strategies. In: Proc. of WRLA 2008 (2008) · Zbl 1347.68199
[23] Andrei, O.: A Graph Rewriting Calculus: Applications to Biology and Autonomous Systems. Ph.D thesis, INPL, Nancy, France (2008)
[24] Cirstea, H., Kirchner, C.: The rewriting calculus - Part I and II. Logic Journal of the IGPL 9(3), 427–498 (2001) · Zbl 0986.03027
[25] Bertolissi, C., Baldan, P., Cirstea, H., Kirchner, C.: A Rewriting Calculus for Cyclic Higher-order Term Graphs. ENTCS 127(5), 21–41 (2005) · Zbl 1272.68167
[26] Cirstea, H., Kirchner, C., Liquori, L., Wack, B.: Rewrite strategies in the rewriting calculus. ENTCS 86(4), 593–624 (2003) · Zbl 1270.68122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.