Micro-macro numerical modelling of bone regeneration in tissue engineering. (English) Zbl 1194.74204

Summary: Bone tissue regeneration using scaffolds inherently attends to two well-differentiated scales, i.e., the tissue level where the scaffold is implanted and the scaffold pore level where bone regeneration occurs. In this paper, this phenomenon is mathematically described and implemented as a two-length-scale coupled problem. Mechanical and fluid flow scaffold properties are macroscopically derived by means of the homogenization technique while the variables at the microscopic level are obtained by invoking the localization problem. As a first approach, cell migration within the scaffold is macroscopically modelled as a diffusion process based on the Fick’s law, with the diffusion coefficient depending on the size and spatial distribution of pores. At the microscopic scale, bone growth at the scaffold surface is considered to be proportional to the cell concentration and regulated by the local strain energy density. The mathematical model proposed has been numerically implemented using the finite element method (FEM) and the Voxel-FEM at the macroscopic and microscopic scales, respectively. The model has been qualitatively compared with experimental results found in the literature for a scaffold implanted in the femoral condyle of a rabbit achieving a good agreement.


74L15 Biomechanical solid mechanics
92C10 Biomechanics
Full Text: DOI


[1] Patrick, C.W.; Mikos, A.G.; McIntire, L.V., Prospectus of tissue engineering, Frontiers in tissue engineering, (1998), Elsevier Science New York
[2] Langer, R.; Vacanti, J.P., Tissue engineering, Science, 260, 920-926, (1993)
[3] Shieh, S.J.; Vacanti, J.P., State-of-the-art tissue engineering: from tissue engineering to organ building, Surgery, 137, 1-7, (2005)
[4] Langer, R., Tissue engineering: perspectives, challenges and future directions, Tissue engrg., 13, 1-2, (2007)
[5] Sevostianov, I.; Kachanov, M., Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone, J. biomech., 33, 881-888, (2000)
[6] Hellmich, C.; Ulm, F.J.; Dormieux, L., Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? arguments from a multiscale approach, Biomech. model. mechanobiol., 2, 219-238, (2004)
[7] Hellmich, C.; Barthelemy, J.F.; Dormieux, L., Mineralcollagen interactions in elasticity of bone ultrastructure a continuum micromechanics approach, Eur. J. mech. A, 23, 783-810, (2004) · Zbl 1058.74584
[8] H Qina, Q.; Swainb, M.V., A micro-mechanics model of dentin mechanical properties, Biomaterials, 25, 5081-5090, (2004)
[9] Fritsch, A.; Hellmich, C., ‘universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity, J. th. biol., 244, 597-620, (2007)
[10] Terada, K.; Ito, T.; Kikuchi, N., Characterization of the mechanical behaviours of solid – fluid mixture by the homogenization method, Comput. methods appl. mech. engrg., 153, 223-257, (1998) · Zbl 0926.74097
[11] Miehe, C.; Schröeder, J.; Schotte, J., Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials, Comput. methods appl. mech. engrg., 171, 387-418, (1999) · Zbl 0982.74068
[12] Özdemir, I.; Brekelmans, W.A.M.; Geers, M.G.D., Computational homogenization for heat conduction in heterogeneous solids, Int. J. numer. methods engrg., 73, 185-204, (2008) · Zbl 1159.74029
[13] Saiki, I.; Terada, K.; Ikeda, K.; Hori, M., Appropriate number of unit cells in a representative volume element for micro-structural bifurcation encountered in a multi-scale modeling, Comput. methods appl. mech. engrg., 191, 2561-2585, (2002) · Zbl 1053.74014
[14] Kouznetsova, V.; Geers, M.G.D.; Brekelmans, W.A.M., Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Int. J. numer. methods engrg., 54, 1235-1260, (2002) · Zbl 1058.74070
[15] Nemat-Nasser, S.; Hori, M., Micromechanics: overall properties of heterogeneous materials, (1993), Elsevier Amsterdam · Zbl 0924.73006
[16] Kachanov, M.; Sevostianov, I., On quantitative characterization of microstructures and effective properties, Int. J. solids struct., 42, 309-336, (2005) · Zbl 1101.74013
[17] Terada, K.; Kikuchi, N., A class of general algorithms for multi-scale analyses of heterogeneous media, Comput. methods appl. mech. engrg., 190, 5427-5464, (2001) · Zbl 1001.74095
[18] Miehe, C.; Bayreuther, C.G., On multiscale FE analyses of heterogenous structures: from homogenization to multigrid solvers, Int. J. numer. methods engrg., 71, 1135-1180, (2007) · Zbl 1194.74443
[19] Hollister, S.J.; Maddox, R.D.; Taboas, J.M., Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomaterials, 23, 4095-4103, (2002)
[20] Taboas, J.M.; Maddox, R.D.; Krebsbach, P.H.; Hollister, S.J., Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer – ceramic scaffolds, Biomaterials, 24, 181-194, (2003)
[21] Lin, C.Y.; Kikuchi, N.; Hollister, S.J., A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity, J. biomech., 37, 623-636, (2004)
[22] Hollister, S.J.; Fyhrie, D.P.; Jepsen, K.J.; Goldstein, S.A., Application of homogenization theory to the study of trabecular bone mechanics, J. biomech., 24, 825-839, (1991)
[23] Bensoussan, A.; Lionis, J.L.; Papanicolaou, G., Asymptotic analysis for periodic structures, (1978), North-Holland Amsterdam
[24] Sanchez-Palencia, E., Non-homogeneous media and vibration theory, Lecture notes in physics, 127, (1980), Springer Berlin
[25] Adachi, T.; Osako, Y.; Tanaka, M.; Hojo, M.; Hollister, S.J., Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration, Biomaterials, 27, 3964-3972, (2006)
[26] Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage, Biomaterials, 21, 2529-2543, (2000)
[27] Karageorgiou, V.; Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26, 5474-5491, (2005)
[28] Jerome, R.; Maquet, V., Design of macroporous biodegradable polymer scaffolds for cell transplantation, Mater. sci. forum, 250, 15-42, (1997)
[29] Hu, Y.; Winn, S.R.; Krajbich, I.; Hollinger, J.O., Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro, J. biomed. mater. res. A, 64A, 583-590, (2003)
[30] Wake, M.C.; Patrick, C.W.; Mikos, A.G., Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates, Cell transplant., 3, 339-343, (1994)
[31] Adachi, T.; Tomita, Y.; Sakaue, H.; Tanaka, M., Simulation of trabecular surface remodeling based on local stress nonuniformity, JSME int. J. C-mech. syst., 40, 782-792, (1997)
[32] Adachi, T.; Tsubota, K.I.; Tomita, Y.; Hollister, S.J., Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models, J. biomech. engrg.-T ASME, 123, 403-409, (2001)
[33] Kelly, D.J.; Prendergast, P.J., Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair, Tissue engrg., 12, 2509-2519, (2006)
[34] Prendergast, P.J.; Huiskes, R.; Søballe, K., Biophysical stimuli on cells during tissue differentiation at implant interfaces, J. biomech., 30, 539-548, (1997)
[35] J.A. Sanz-Herrera, J.M. Garcia-Aznar, M. Doblare, A mathematical model for bone tissue regeneration inside a specific type of scaffold, Biomech. Model. Mechanobiol., in press. · Zbl 1185.74064
[36] Suquet, P.M., Elements of homogenization for inelastic solid mechanics, trends and applications of pure mathematics to mechanics, (), 193-278
[37] Guldberg, R.E.; Hollister, S.J.; Charras, G.T., The accuracy of digital image-based finite element models, J. biomech. engrg., 27, 433-444, (1998)
[38] Pothuaud, L.; Fricain, J.C.; Pallu, S.; Bareille, R.; Renard, M.; Durrieu, M.C.; Dard, M.; Vernizeau, M.; Amedee, J., Mathematical modeling of the distribution of newly formed bone in bone tissue engineering, Biomaterials, 26, 6788-6797, (2005)
[39] Einhorn, T.A.; Majeska, R.J.; Rush, E.B.; Levine, P.M.; Horrowitz, M.C., The expression of cytokine activity by fracture callus, J. bone miner. res., 10, 1272-1281, (1995)
[40] Beaupre, G.S.; Orr, T.E.; Carter DR, D.R., An approach for time-dependent bone modeling and remodeling-theoretical development, J. orthop. res., 8, 651-661, (1990)
[41] C.R. Jacobs, Numerical Simulation of Bone Adaptation to Mechanical Loading, Ph.D. Thesis, Stanford University, 1994.
[42] Doblare, M.; Garcia, J.M., Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement, J. biomech., 34, 1157-1170, (2001)
[43] Doblare, M.; Garcia, J.M., Anisotropic bone remodelling model based on a continuum damage-repair theory, J. biomech., 35, 1-17, (2002)
[44] Turner, C.H.; Forwood, M.R.; Rho, J.; Yoshikawa, T., Mechanical loading thresholds for lamellar and woven bone formation, J. bone miner. res., 9, 87-97, (1994)
[45] Tang, L.; Lin, Z.; Yong-Ming, L., Effects of different magnitudes of mechanical strain on osteoblasts in vitro, Biochem. bioph. res. co., 344, 122-128, (2006)
[46] Gopferich A, A., Polymer bulk erosion, Macromolecules, 30, 2598-2604, (1997)
[47] Bathe, K.J., Finite element procedures, (1996), Prentice-Hall New Jersey · Zbl 0511.73065
[48] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (2000), McGraw-Hill Dover, New York
[49] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (2000), Butterworth-Heinemann Oxford · Zbl 0991.74002
[50] Reddy, J.N., An introductory course to the finite element method, (1993), McGraw-Hill Boston
[51] I3A cluster facilities. <http://hermes.cps.unizar.es/ganglia/?c=Cluster
[52] Tadic, D.; Beckmann, F.; Schwarz, K.; Epple, M., A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering, Biomaterials, 25, 3335-3340, (2004)
[53] Metsger, D.S.; Rieger, M.R.; Foreman, D.W., Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramic, J. mater. sci.-mater. M, 10, 9-17, (1999)
[54] Brigido-Diego, R.; Mas-Estelles, J.; Sanz, J.A.; Garcia-Aznar, J.M.; Salmeron-Sanchez, M., Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering. fabrication, mechanical properties and finite element modeling, J. biomed. mater. res. B, 81B, 448-455, (2007)
[55] Doschak, M.R.; LaMothe, J.M.; Cooper, M.L.; Hallgrimsson, B.; Hanley, D.A.; Bray, R.C.; Zernicke, R.F., Biophosphonates reduce bone mineral loss at ligament entheses after joint injury, Osteoarth cartilage, 13, 790-797, (2005)
[56] Gushue, D.L.; Houck, J.; Lerner, A.M., Rabbit knee joint biomechanics: motion analysis and modeling of forces during hopping, J. orthop. res., 23, 735-742, (2005)
[57] Gogolewski, S.; Katarzyna, G.; Turner AS, A.S., Regeneration of bicortical defects in the iliac crest of estrogen-deficient sheep, using new biodegradable polyurethane bone graft substitutes, J. biomed. mater. res. A, 77A, 802-810, (2006)
[58] Weiss, P.; Obadia, L.; Magne, D.; Bourges, X.; Rau, C.; Weitkamp, T.; Khairoun, I.; Bouler, J.M.; Chappard, D.; Gauthier, O.; Daculsi, G., Synchotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials, Biomaterials, 24, 4591-4601, (2003)
[59] Jones, A.C.; Arns, C.H.; Sheppard, A.P.; Hutmacher, D.W.; Milthorpe, B.K.; Knackstedt, M.A., Assesment of bone ingrowth into porous biomaterials using micro-CT, Biomaterials, 28, 2491-2504, (2007)
[60] van Lenthe, G.H.; Hagenmüller, H.; Bohner, M.; Hollister, S.J.; Meinel L, L.; Müller, R., Nondestructive micro-computed tomography for biological imaging and quantification of scaffold – bone interaction in-vivo, Biomaterials, 28, 2479-2490, (2007)
[61] Gauthier, O.; Müller, R.; von Stechow, D.; Lamy, B.; Weiss, P.; Bouler, J.M.; Aguado, E.; Daculsi, G., In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study, Biomaterials, 26, 5444-5453, (2005)
[62] Schwarz, U.S.; Bischofs, I.B., Physical determinants of cell organization in soft media, Med. engrg. phys., 27, 763-772, (2005)
[63] Martin, R.B.; Burr, D.B.; Sharkey, N.A., Skeletal tissue mechanics, (1998), Springer Berlin, (Chapter 2)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.