A regularized XFEM framework for embedded cohesive interfaces. (English) Zbl 1194.74364

Summary: This work focuses on XFEM modeling of elastodamaging interfaces characterized by regularized kinematics. After regularization of the displacement discontinuity, a process zone of finite width with continuous strain fields emerges. The stress fields are independently energy-deduced, modeled via specific constitutive laws, and subsequently introduced within the virtual work principle. The methodology can address cohesive interfaces with vanishing and finite thickness in a unified way. Two-dimensional results for a strain localization problem and several delamination tests are discussed in detail and compared with previous numerical/experimental results.


74S05 Finite element methods applied to problems in solid mechanics
74A50 Structured surfaces and interfaces, coexistent phases


Full Text: DOI


[1] Wittmann, F.H.; Mihashi, H.; Nomura, N., Size effect on fracture energy of concrete, Engrg. fract. mech., 35, 107-115, (1990)
[2] Espinosa, H.D.; Dwivedi, S.; Lu, H.C., Modeling impact induced delamination of woven fiber reinforced composites with contact/cohesive laws, Comput. methods appl. mech. engrg., 183, 259-290, (2000) · Zbl 0984.74074
[3] Van den Bosch, M.J.; Schreurs, P.J.G.; Geers, M.G.D., A cohesive zone model with a large displacement formulation accounting for interfacial fibrilation, Eur. J. mech./A sol., 26, 1-19, (2007) · Zbl 1105.74039
[4] Simo, J.C.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Comput. mech., 12, 277-296, (1993) · Zbl 0783.73024
[5] Oliver, J.; Huespe, A.E.; Sánchez, P.J., A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM, Comput. methods appl. mech. engrg., 195, 4732-4752, (2006) · Zbl 1144.74043
[6] Melenk, JM.; Babuska, I., The partition of unity finite element method: basic theory and applications, Comput. methods appl. mech. engrg., 39, 289-314, (1996) · Zbl 0881.65099
[7] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. meth. engrg., 46, 131-150, (1999) · Zbl 0955.74066
[8] M. Jirásek, T. Belytschko, Computational resolution of strong discontinuities, WCCM V, July 712, 2002, Vienna, Austria Eds.: H.A. Mang et al., 20 pages on CD.
[9] Moes, N.; Belytschko, T., Extended finite element method for cohesive crack growth, Engrg. fract. mech., 69, 813-833, (2002)
[10] Wells, G.N.; Sluys, L.J., A new method for modelling cohesive cracks using finite elements, Int. J. numer. meth. engrg., 50, 2667-2682, (2001) · Zbl 1013.74074
[11] Mariani, S.; Perego, U., Extended finite element method for quasi brittle fracture, Int. J. numer. meth. engrg., 58, 103-126, (2003) · Zbl 1032.74673
[12] Meschke, G.; Dumstorff, P., Energy-based modeling of cohesive and cohesionless cracks via X-FEM, Comput. methods appl. mech. engrg., 196, 2338-2357, (2007) · Zbl 1173.74384
[13] Liu, X.Y.; Xiao, Q.Z.; Karihaloo, B.L., XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials, Int. J. numer. meth. engrg., 59, 1103-1118, (2004) · Zbl 1041.74543
[14] Xiao, Q.Z.; Karihaloo, B.L.; Liu, X.Y., Incremental-secant modulus iteration scheme and stress recovery for simulating cracking process in quasi-brittle materials using XFEM, Int. J. numer. meth. engrg., 69, 2606-2635, (2007) · Zbl 1194.74483
[15] Xiao, Q.Z.; Karihaloo, B.L., Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM, Comput. methods appl. mech. engrg., 196, 1864-1873, (2007) · Zbl 1173.74448
[16] Simone, A.; Sluys, L.J., The use of displacement discontinuities in a rate-dependent medium, Comput. methods appl. mech. engrg., 193, 3015-3033, (2004) · Zbl 1067.74568
[17] Comi, C.; Mariani, S.; Perego, U., An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation, Int. J. numer. methods geomech., 31, 213-238, (2007) · Zbl 1108.74052
[18] Unger, J.F.; Eckardt, S.; Könke, C., Modelling of cohesive crack growth in concrete structures with the extended finite element method, Comput. methods appl. mech. engrg., 196, 4087-4100, (2007) · Zbl 1173.74387
[19] Patzák, B.; Jirásek, M., Process zone resolution by extended finite elements, Engrg. fract. mech., 70, 957-977, (2003)
[20] Benvenuti, E.; Tralli, A.; Ventura, G., A regularized XFEM model for the transition from continuous to discontinuous displacements, Int. J. numer. meth. engrg., 74, 911-944, (2008) · Zbl 1158.74479
[21] Kolmogorov, A.N.; Fomin, S.V., Introductory real analysis, (1970), Dover · Zbl 0213.07305
[22] Suquet, P., Discontinuities and plasticity, (), 280-340
[23] Chaboche, J.L.; Feyel, F.; Monerie, Y., Interface debonding models: a viscous regularization with a limited rate dependency, Int. J. solids struct., 38, 3127-3160, (2001) · Zbl 1017.74063
[24] Belytschko, T.; Fish, J.; Engelmann, B.E., A finite element method with embedded localization zones, Comput. methods appl. mech. engrg., 70, 59-89, (1988) · Zbl 0653.73032
[25] Hashin, Z., Thermoelastic properties and conductivity of carbon/carbon fiber composites, Mech. mat., 8, 293-308, (1990)
[26] Benveniste, Y.; Miloh, T., Imperfect soft and stiff interfaces in two-dimensional elasticity, Mech. mat., 33, 309-323, (2001)
[27] Lemaitre, J.; Chaboche, J.L., Mechanics of solids, (1990), Cambridge University Press
[28] Benvenuti, E.; Borino, G.; Tralli, A., A thermodynamically consistent non-local model for elasto-damaging materials, Eur. J. mech. A/sol., 21, 535-553, (2002) · Zbl 1038.74006
[29] Needlemann, A., An analysis of tensile decohesion along an interface, J. mech. phys. sol., 38, 289-324, (1990)
[30] Chandra, N.; Li, H.; Shet, C.; Ghonem, H., Some issues in the application of cohesive zone models for metalceramic interfaces, Int. J. sol. struct., 39, 2827-2855, (2002) · Zbl 1087.74500
[31] Alfano, G., On the influence of the shape of the interface law on the application of cohesive-zone models, Comput. sci. technol., 66, 723-730, (2006)
[32] Iarve, EV., Mesh independent modelling of cracks by using higher order shape functions, Int. J. numer. meth. engrg., 56, 869-882, (2001) · Zbl 1078.74658
[33] Steinmann, P.; Larsson, R.; Runesson, K., On the localization properties of multiplicative hyperelasto-plastic continua with strong discontinuities, Int. J. sol. struct., 34, 969-990, (1997) · Zbl 0947.74508
[34] Gasser, T.C.; Holzapfel, G.A., Modeling 3D crack propagation in unreinforced concrete using PUFEM, Comput. methods appl. mech. engrg., 194, 2859-2896, (2005) · Zbl 1176.74180
[35] Jansson, N.E.; Larsson, R., Rotational interface formulation for delamination analysis of composite laminates, Comput. struct., 81, 2705-2716, (2003)
[36] Simo, J.; Hughes, T., Computational inelasticity, (1998), Springer-Verlag New York · Zbl 0934.74003
[37] Ventura, G., On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method, Int. J. numer. meth. engrg., 66, 761-795, (2006) · Zbl 1110.74858
[38] Strang, G.; Persson, P.O., A simple mesh generator in MATLAB, SIAM rev., 46, 329-345, (2004) · Zbl 1061.65134
[39] Oliver, J.; Huespe, A.E., Theoretical and computational issues in modelling material failure in strong discontinuity scenarios, Comput. methods appl. mech. engrg., 193, 2987-3014, (2004) · Zbl 1067.74505
[40] Andersson, T.; Biel, A., On the effective constitutive properties of a thin adhesive layer loaded in peel, Int. J. fract., 141, 227-246, (2006)
[41] Klarbring, A., Derivation of a model of adhesively bonded joints by the asymptotic expansion method, Int. J. engrg. sci., 29, 493-512, (1991) · Zbl 0762.73069
[42] Y. Mi, M.A. Crisfield, Analytical derivation of laod/displacement relationship for the DCB and MMB and Proof of the FEA formulation, 1997, Imperial College Report 97-02.
[43] Robinson, P.; Song, DQ., A modified DCB specimen for mode I testing of multidirectional laminates, J. comput. mater., 26, 1554-1577, (1991)
[44] Jirásek, M.; Rolshoven, S.; Grassl, P., Size effect on fracture energy induced by nonlocality, Int. J. numer. anal. meth. geomech., 28, 653-670, (2004) · Zbl 1112.74477
[45] Gurtin, M., An introduction to continuum mechanics, (1981), Academic Press · Zbl 0559.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.