Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. (English) Zbl 1194.74480

Summary: Finite element simulations of coupled solid-deformation/fluid-diffusion occurring in earthquake fault zones often require high-fidelity descriptions of the spatial and temporal variations of excess pore water pressure. Large-scale calculation of the coupled fault zone process is often inhibited by the high-order interpolation of the displacement field required to overcome unstable tendencies of the finite elements in the incompressible and nearly incompressible limit. In this work we utilize a stabilized formulation in which the balance of mass is augmented with an additional term representing a stabilization to the incremental change in the pressure field. The stabilized formulation permits equal-order interpolation for the displacement and pore pressure fields and suppresses pore pressure oscillations in the incompressible and nearly incompressible limit. The technique is implemented with a recently developed critical state plasticity model to investigate transient fluid-flow/solid-deformation processes arising from slip weakening of a fault segment. The accompanying transient pore pressure development and dissipation can be used to predict fault rupture and directivity where fluid flow is an important driving force.


74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L05 Geophysical solid mechanics


deal.ii; UMFPACK
Full Text: DOI


[1] Sleep, N.H.; Blanpied, M.L., Creep, compaction and the weak rheology of major faults, Nature, 359, 6397, 687-692, (1992)
[2] Hardebeck, J.L.; Hauksson, E., Role of fluids in faulting inferred from stress field signatures, Science, 285, 5425, 236-239, (1999)
[3] Segall, P.; Rice, J.R., Dilatancy, compaction, and slip instability of a fluid-infiltrated fault, J. geophys. res., 100, B11, 22155-22172, (1995)
[4] Brezzi, F., A discourse on the stability conditions for mixed finite element formulations, Comput. methods appl. mech. engrg., 82, 1-3, 27-57, (1990) · Zbl 0736.73062
[5] Arnold, D.N., Mixed finite element methods for elliptic problems, Comput. methods appl. mech. engrg., 82, 81-300, (1990) · Zbl 0729.73198
[6] Arnold, D.N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 4, 337-344, (1984) · Zbl 0593.76039
[7] Jha, B.; Juanes, R., A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta geotech., 2, 3, 139-153, (2007)
[8] Brezzi, F.; Pitkäranta, J., On the stabilization of finite element approximations of the Stokes problem, Eff. solut. ellip. syst., 11-19, (1984) · Zbl 0552.76002
[9] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 1, 85-99, (1986) · Zbl 0622.76077
[10] Hughes, T.J.R.; Feijóo, G.R.; Mazzei, L.; Quincy, J.B., The variational multiscale method – a paradigm for computational mechanics, Comput. methods appl. mech. engrg., 166, 1-2, 3-24, (1998) · Zbl 1017.65525
[11] Douglas, J.; Wang, J., An absolutely stabilized finite element method for the Stokes problem, Math. comput., 52, 186, 495-508, (1989) · Zbl 0669.76051
[12] Masud, A.; Hughes, T.J.R., A stabilized mixed finite element method for Darcy flow, Comput. methods appl. mech. engrg., 191, 39-40, 4341-4370, (2002) · Zbl 1015.76047
[13] Dohrmann, C.R.; Bochev, P.B., A stabilized finite element method for the Stokes problem based on polynomial pressure projections, Int. J. numer. methods fluids, 46, 183-201, (2004) · Zbl 1060.76569
[14] Oñate, E.; Rojek, J.; Taylor, R.; Zienkiewicz, O., Finite calculus formulation for incompressible solids using linear triangles and tetrahedra, Int. J. numer. methods engrg., 59, 1473-1500, (2004) · Zbl 1041.74546
[15] Masud, A.; Xia, K., A stabilized mixed finite element method for nearly incompressible elasticity, J. appl. mech., 72, 711, (2005) · Zbl 1111.74548
[16] Masud, A.; Xia, K., A variational multiscale method for inelasticity: application to superelasticity in shape memory alloys, Comput. methods appl. mech. engrg., 195, 33-36, 4512-4531, (2006) · Zbl 1123.74046
[17] Romero, I.; Bischoff, M., Incompatible bubbles: A non-conforming finite element formulation for linear elasticity, Comput. methods appl. mech. engrg., 196, 9-12, 1662-1672, (2007) · Zbl 1173.74440
[18] J. Wan, Stabilized finite element methods for coupled geomechanics and multiphase flow. Ph.D. Thesis, Stanford University, 2002.
[19] Truty, A., A Galerkin/least-squares finite element formulation for consolidation, Int. J. numer. methods engrg., 52, 763-786, (2001) · Zbl 1017.74077
[20] Truty, A.; Zimmermann, T., Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media, Comput. methods appl. mech. engrg., 195, 1517-1546, (2006) · Zbl 1116.74067
[21] Pastor, M.; Zienkiewicz, O.C.; Li, T., Stabilized finite elements with equal order of interpolation for soil dynamics problems, Arch. comput. methods engrg., 6, 1, 3-33, (1999)
[22] Pastor, M.; Li, T.; Liu, X.; Zienkiewicz, O.C.; Quecedo, M., A fractional step algorithm allowing equal order of interpolation for coupled analysis of saturated soil problems, Mech. cohes. frict. mater., 5, 7, 511-534, (2000)
[23] Li, X.; Han, X.; Pastor, M., An iterative stabilized fractional step algorithm for finite element analysis in saturated soil dynamics, Comput. methods appl. mech. engrg., 192, 35-36, 3845-3859, (2003) · Zbl 1054.74732
[24] Bochev, P.B.; Dohrmann, C.R.; Gunzburger, M.D., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. numer. anal., 44, 1, 82-101, (2006) · Zbl 1145.76015
[25] Bochev, P.B.; Dohrmann, C.R., A computational study of stabilized, low-order \(C^0\) finite element approximations of Darcy equations, Comput. mech., 38, 323-333, (2006) · Zbl 1177.76191
[26] Burman, E., Pressure projection stabilizations for Galerkin approximations of stokes’ and darcy’s problem, Numer. methods partial different. equat., 24, 1, 127-143, (2007) · Zbl 1139.76029
[27] Benzi, M.; Golub, G.H.; Liesen, J., Numerical solution of saddle point problems, Acta numer., 14, 1-137, (2005) · Zbl 1115.65034
[28] Ben-Zion, Y.; Rice, J.R., Dynamic simulation of slip on a smooth fault in an elastic solid, J. geophys. res., 102, 17771-17784, (1997)
[29] Borja, R.I.; Foster, C.D., Continuum mathematical modeling of slip weakening in geological systems, J. geophys. res., 112, B04301, (2007)
[30] Ida, Y., Cohesive force across the tip of a longitudinal shear crack and griffith’s specific surface energy, J. geophys. res., 77, 3796-3805, (1972)
[31] Wong, T.-F., Shear fracture energy of westerly granite from post-failure behavior, J. geophys. res., 87, 990-1000, (1982)
[32] Biot, M.A., General theory of three-dimensional consolidation, J. appl. phys., 12, 2, 155-164, (1941) · JFM 67.0837.01
[33] Biot, M.A., Theory of elasticity and consolidation for a porous anisotropic solid, J. appl. phys., 26, 2, 82-185, (1955) · Zbl 0067.23603
[34] Murad, M.A.; Loula, A.F.D., On stability and convergence of finite element approximations of biot’s consolidation problem, Int. J. numer. meth. engrg., 37, 645-667, (1994) · Zbl 0791.76047
[35] Borja, R.I., One-step and linear multistep methods for nonlinear consolidation, Comput. methods appl. mech. engrg., 85, 3, 239-272, (1991) · Zbl 0764.73097
[36] Paterson, M.S.; Wong, T.-F., Experimental rock deformation – the brittle field, (2005), Springer-Verlag Berlin, Heidelberg
[37] Scholz, C.H., The mechanics of earthquakes and faulting, (1990), Cambridge Univ. Press New York
[38] Dieterich, J.H., Modeling of rock friction 1. experimental results and constitutive equations, J. geophys. res., 84, 2161-2168, (1979)
[39] Ruina, A.L., Slip instability and state variable friction laws, J. geophys. res., 88, 10359-10370, (1983)
[40] T.-F. Wong, On the normal stress dependence of the shear fracture energy. in: S. Das, J. Boatwright, and C.H. Scholz (Eds.), Earthquake Source Mechanics, Geophys. Monogr. Ser., Vol. 37. Washington D.C., AGU., 1986, pp. 1-11.
[41] Roscoe, K.H.; Burland, J.B., On the generalized stress – strain behaviour of ‘wet’ Clay, Engrg. plast., 3, 539-609, (1968) · Zbl 0233.73047
[42] Borja, R.I.; Tamagnini, C., Cam-Clay plasticity part III: extension of the inifinitesimal model to include finite strains, Comput. methods appl. mech. engrg., 155, 73-95, (1998) · Zbl 0959.74010
[43] Borja, R.I., Coupling plasticity and energy-conserving elasticity models for clays, J. geotech. geoenviron. engrg. ASCE, 123, 10, 948, (1999)
[44] Borja, R.I., Cam-Clay plasticity. part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media, Comput. methods appl. mech. engrg., 193, 48-51, 301-5338, (2004) · Zbl 1112.74430
[45] Butterfield, R., A natural compression law for soils, Géotechnique, 29, 468-480, (1979)
[46] Hasiguchi, K., On the linear relations of V-\(\ln p\) and \(\ln v\)-\(\ln p\) for isotropic consolidation of soils, Int. J. numer. analyt. methods geomech., 19, 367-376, (1995) · Zbl 0821.73055
[47] A.W. McKiernan and D.M. Saffer, Data report: Permeability and consolidation properties of subducting sediments off Costa Rica, ODP Leg 205.in: J.D. Morris, H.W. Villinger, and A. Klaus (Eds.), Proc. ODP, Sci. Results, vol. 205. 2006, pp. 1-24.
[48] Bangerth, W.; Hartmann, R.; Kanschat, G., Deal.II - a general purpose object oriented finite element library, ACM trans. math. software, 33, 4, 27, (2007), Article 24 · Zbl 1365.65248
[49] Davis, T.A., Algorithm 832: UMFPACK v4.3 - an unsymmetric-pattern multifrontal method, ACM trans math. software, 30, 2, 196-199, (2004) · Zbl 1072.65037
[50] Borja, R.I.; Lee, S.R., Cam-Clay plasticity, part I: implicit integration of elastoplastic constitutive relations, Comput. methods appl. mech. engrg., 78, 1, 49-72, (1990) · Zbl 0718.73034
[51] Lambe, T.W.; Whitman, R.V., Soil mechanics, (1968), Wiley New York
[52] Borja, R.I., Conditions for instabilities in collapsible solids including volume implosion and compaction banding, Acta geotech., 1, 2, 107-122, (2006)
[53] Borja, R.I., Condition for liquefaction instability in fluid-saturated granular soils, Acta geotech., 1, 4, 11-224, (2006)
[54] Becker, R.; Braack, M., A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 38, 173-199, (2001) · Zbl 1008.76036
[55] White, J.A.; Borja, R.I.; Fredrich, J.T., Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations, Acta geotech., 1, 4, 195-209, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.