zbMATH — the first resource for mathematics

Optimal dividend strategies in a dual model with capital injections. (English) Zbl 1194.91188
Summary: We study three types of practical optimization problems faced by a firm that can control its liquid reserves by paying dividends and by issuing new equity. In the first problem, we consider the classical dividend problem without equity issuance. The second problem aims at maximizing the expected discounted dividend payments minus the expected discounted costs of issuing new equity over strategies associated with positive reserves at all times. The third problem has the same objective as the second one, but with no constraints on the reserves. Under the assumption of proportional transaction costs, we identify the value functions and the optimal strategies. We also present the relationship between the three problems.

91G50 Corporate finance (dividends, real options, etc.)
91B16 Utility theory
60H05 Stochastic integrals
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI
[1] Avanzi B, Gerber HU, Shiu ESW (2007) Optimal dividends in the dual model. Insur Math Econ 41: 111–123 · Zbl 1131.91026 · doi:10.1016/j.insmatheco.2006.10.002
[2] Bayraktar E, Egami M (2008) Optimizing venture capital investments in a jump diffusion model. Math Methods Oper Res 67: 21–42 · Zbl 1151.91049 · doi:10.1007/s00186-007-0181-x
[3] Chaleyat-Maurel M, EI Karoui N, Marchal B (1980) Reflexion discontinue et systems stochasiques. Ann Probab 8: 1049–1067 · Zbl 0448.60043 · doi:10.1214/aop/1176994567
[4] Fleming WH, Soner M (2006) Controlled markov processes and viscosity solutions, 2nd edn. Springer, New York · Zbl 1105.60005
[5] Gerber H, Smith N (2008) Optimal dividends with incomplete information in the dual model. Insur Math Econ 43: 227–233 · Zbl 1189.91074 · doi:10.1016/j.insmatheco.2008.06.002
[6] He L, Liang Z (2008) Optimal financing and dividend control of the insurance company with proportional reinsurance policy. Insur Math Econ 42: 976–983 · Zbl 1141.91445 · doi:10.1016/j.insmatheco.2007.11.003
[7] Kulenko N, Schmidli H (2008) Optimal dividend strategies in a cramér-lundberg model with capital injections. Insur Math Econ 43: 270–278 · Zbl 1189.91075 · doi:10.1016/j.insmatheco.2008.05.013
[8] Li B, Wu R (2008) The dividend function in the jump-diffusion dual model with barrier dividend strategy. Appl Math Mech (English Edition) 39: 1239–1249 · Zbl 1166.60325 · doi:10.1007/s10483-008-0913-z
[9] Løkka A, Zervos M (2008) Optimal dividend and issuance of equity policies in the presence of proportional costs. Insur Math Econ 42: 954–961 · Zbl 1141.91528 · doi:10.1016/j.insmatheco.2007.10.013
[10] Ng ACY (2009) On a dual model with a dividend threshold. Insur Math Econ 44: 315–324 · Zbl 1163.91441 · doi:10.1016/j.insmatheco.2008.11.011
[11] Øksendal B, Sulem A (2007) Applied stochastic control of jump diffusions, 2nd edn. Springer, New York · Zbl 1116.93004
[12] Sethi S, Taksar M (2002) Optimal financing of a corporation subject to random returns. Math Finance 12: 155–172 · Zbl 1048.91068 · doi:10.1111/1467-9965.t01-2-02002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.