×

zbMATH — the first resource for mathematics

Adaptive state-feedback stabilization for high-order stochastic non-linear systems with uncertain control coefficients. (English) Zbl 1194.93213
Summary: This paper investigates the adaptive state-feedback stabilization problem for a class of high-order stochastic non-linear systems with unknown lower and supper bounds for uncertain control coefficients. Under some weaker and reasonable assumptions, a smooth adaptive state-feedback controller is designed, which guarantees that the closed-loop system has an almost surely unique solution on [\(0,\infty \), the equilibrium of interest is globally stable in probability and the states can be regulated to the origin almost surely. A simulation example is given to show the systematic design and effectiveness of the controller.

MSC:
93E15 Stochastic stability in control theory
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/S0167-6911(97)00068-6 · Zbl 0902.93049
[2] DOI: 10.1016/S0167-6911(97)00067-4 · Zbl 0902.93050
[3] DOI: 10.1109/9.746260 · Zbl 0958.93095
[4] DOI: 10.1016/S0167-6911(99)00084-5 · Zbl 0948.93053
[5] DOI: 10.1109/9.940927 · Zbl 1008.93068
[6] Has’minskii RZ, Norwell, Massachusetts: Kluwer Academic Publishers, (1980)
[7] Krstić M, Stabilization of Uncertain Nonlinear Systems (1998)
[8] Kushner HJ, Stochastic Stability and Control (1967)
[9] DOI: 10.1016/S0167-6911(99)00115-2 · Zbl 0948.93056
[10] DOI: 10.1016/S0167-6911(99)00114-0 · Zbl 0948.93055
[11] DOI: 10.1109/TAC.2002.1000270 · Zbl 1364.93400
[12] DOI: 10.1109/TAC.2002.800773 · Zbl 1364.93399
[13] DOI: 10.1016/j.sysconle.2003.11.006 · Zbl 1157.93538
[14] DOI: 10.1360/03yf0079 · Zbl 1186.93065
[15] DOI: 10.1137/S0363012903439185 · Zbl 1117.93067
[16] DOI: 10.1109/TAC.2002.808484 · Zbl 1364.93283
[17] DOI: 10.1016/j.automatica.2006.08.028 · Zbl 1115.93076
[18] DOI: 10.1360/03yf9011 · Zbl 1185.93046
[19] DOI: 10.1109/9.704978 · Zbl 0957.93046
[20] DOI: 10.1137/S0363012996307059 · Zbl 0924.93046
[21] DOI: 10.1109/9.935055 · Zbl 1007.93025
[22] Pan ZG, Science in China (Ser. F) 44 pp 292– (2001)
[23] DOI: 10.1109/9.935058 · Zbl 1012.93053
[24] DOI: 10.1109/9.981720 · Zbl 1364.93349
[25] DOI: 10.1137/S0363012900370090 · Zbl 0995.93060
[26] DOI: 10.1080/00207170600893004 · Zbl 1124.93057
[27] DOI: 10.1016/j.automatica.2006.10.020 · Zbl 1114.93104
[28] Xie XJ, Int. J. Rob. Nonlin. Cont (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.