zbMATH — the first resource for mathematics

Parameter estimation for exponential sums by approximate prony method. (English) Zbl 1194.94128
Summary: The recovery of signal parameters from noisy sampled data is a fundamental problem in digital signal processing. In this paper, we consider the following spectral analysis problem: Let \(f\) be a real-valued sum of complex exponentials. Determine all parameters of \(f\), i.e., all different frequencies, all coefficients, and the number of exponentials from finitely many equispaced sampled data of \(f\). This is a nonlinear inverse problem. In this paper, we present new results on an approximate Prony method (APM) which is based on [1]. In contrast to [1], we apply matrix perturbation theory such that we can describe the properties and the numerical behavior of the APM in detail. The number of sampled data acts as regularization parameter. The first part of APM estimates the frequencies and the second part solves an overdetermined linear Vandermonde-type system in a stable way. We compare the first part of APM also with the known ESPRIT method. The second part is related to the nonequispaced fast Fourier transform (NFFT). Numerical experiments show the performance of our method.

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
mctoolbox; NFFT
Full Text: DOI
[1] Beylkin, G.; Monzón, L.: On approximations of functions by exponential sums, Appl. comput. Harmon. anal. 19, 17-48 (2005) · Zbl 1075.65022 · doi:10.1016/j.acha.2005.01.003
[2] Briggs, W. L.; Henson, V. E.: The DFT, (1995) · Zbl 0827.65147
[3] Papy, J. M.; De Lathauwer, L.; Van Huffel, S.: Exponential data Fitting using multilinear algebra: the single-channel and multi-channel case, Numer. linear algebra appl. 12, 809-826 (2005) · Zbl 1164.93012 · doi:10.1002/nla.453
[4] Potts, D.; Tasche, M.: Numerical stability of nonequispaced fast Fourier transforms, J. comput. Appl. math. 222, 655-674 (2008) · Zbl 1210.65208 · doi:10.1016/j.cam.2007.12.025
[5] S.L. Marple Jr., Digital spectral analysis with applications, in: Prentice Hall Signal Processing Series, Prentice Hall Inc., Englewood Cliffs, 1987.
[6] Golub, G. H.; Milanfar, P.; Varah, J.: A stable numerical method for inverting shape from moments, SIAM J. Sci. comput. 21, 1222-1243 (1999) · Zbl 0956.65030 · doi:10.1137/S1064827597328315
[7] Dragotti, P. L.; Vetterli, M.; Blu, T.: Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets strang-fix, IEEE trans. Signal process. 55, 1741-1757 (2007) · Zbl 1391.94598
[8] Horn, R. A.; Johnson, C. R.: Matrix analysis, (1985) · Zbl 0576.15001
[9] Potts, D.; Steidl, G.; Tasche, M.: Fast Fourier transforms for nonequispaced data: a tutorial, Modern sampling theory: mathematics and applications, 247-270 (2001)
[10] J. Keiner, S. Kunis, D. Potts, NFFT 3.0, C subroutine library \langlehttp://www.tu-chemnitz.de/potts/nfft angle, 2006.
[11] Kunis, S.; Potts, D.: Stability results for scattered data interpolation by trigonometric polynomials, SIAM J. Sci. comput. 29, 1403-1419 (2007) · Zbl 1146.65016 · doi:10.1137/060665075
[12] Björck, å.: Numerical methods for least squares problems, (1996) · Zbl 0847.65023
[13] Hua, Y.; Sarkar, T. K.: Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE trans. Acoust. speech signal process. 38, 814-824 (1990) · Zbl 0706.62094 · doi:10.1109/29.56027
[14] Sarkar, T. K.; Pereira, O.: Using the matrix pencil method to estimate the parameters of a sum of complex exponentials, IEEE antennas propagation mag. 37, 48-55 (1995)
[15] Roy, R.; Kailath, T.: ESPRIT-estimation of signal parameters via rotational invariance techniques, IEEE trans. Acoust. speech signal process. 37, 984-994 (1989) · Zbl 0701.93090
[16] Roy, R.; Kailath, T.: ESPRIT-estimation of signal parameters via rotational invariance techniques, Signal processing, part II: Control theory and applications, 369-411 (1990) · Zbl 0701.93090
[17] Manolakis, D. G.; Ingle, V. K.; Kogon, S. M.: Statistical and adaptive signal processing, (2005)
[18] Strobach, P.: Fast recursive low-rank linear prediction frequency estimation algorithms, IEEE trans. Signal process. 44, 834-847 (1996)
[19] Strobach, P.: Total least squares phased averaging and 3-D ESPRIT for joint azimuth-elevation-carrier estimation, IEEE trans. Signal process. 59, 54-62 (2001)
[20] Higham, N. J.: Accuracy and stability of numerical algorithms, (1996) · Zbl 0847.65010
[21] Jones, W. B.; Njåstad, O.; Waadeland, H.: Application of Szegő polynomials to frequency analysis, SIAM J. Math. anal. 25, 491-512 (1994) · Zbl 0798.33008 · doi:10.1137/S0036141092229288
[22] Mhaskar, H. N.; Prestin, J.: On local smoothness classes of periodic functions, J. Fourier anal. Appl. 11, 353-373 (2005) · Zbl 1096.42018 · doi:10.1007/s00041-005-4006-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.