×

zbMATH — the first resource for mathematics

Homotopy perturbation method for solving boundary value problems. (English) Zbl 1195.65207

MSC:
65N99 Numerical methods for partial differential equations, boundary value problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] He, J.H., Perturbation methods: basic and beyond, (2006), Elsevier Amsterdam
[2] Pamuk, S., Phys. lett. A, 344, 184, (2005)
[3] Abassy, T.A.; El-Tawil, M.A.; Saleh, H.K., Int. J. nonlinear sci. numer. simulation, 5, 327, (2004)
[4] El-Sayed, S.M.; Kaya, D.; Zarea, S., Int. J. nonlinear sci. numer. simulation, 5, 105, (2004)
[5] El-Danaf, T.S.; Ramadan, M.A., Chaos solitons fractals, 26, 747, (2005)
[6] G.L. Liu, Weighted residual decomposition method in nonlinear applied mathematics, in: Proceedings of 6th Congress of Modern Mathematical and Mechanics, Suzhou, China, 1995, p. 643 (in Chinese)
[7] He, J.H., Commun. nonlinear sci. numer. simulation, 2, 230, (1997)
[8] Wazwaz, A.M., Found. phys. lett., 13, 493, (2000)
[9] Abdou, M.A.; Soliman, A.A., J. comput. appl. math., 181, 245, (2005)
[10] Momani, S.; Abuasad, S., Chaos solitons fractals, 27, 5, 1119, (2006)
[11] He, J.H., Int. J. nonlinear mech., 34, 699, (1999)
[12] He, J.H., Chaos solitons fractals, 26, 695, (2005)
[13] He, J.H., Int. J. nonlinear sci. numer. simulation, 6, 207, (2005)
[14] He, J.H., Int. J. nonlinear mech., 35, 37, (2000)
[15] El-Shahed, M., Int. J. nonlinear sci. numer. simulation, 6, 163, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.