Synchronization and control of hyperchaotic complex Lorenz system. (English) Zbl 1195.93060

Summary: The aim of this paper is to investigate the phenomenon of Projective Synchronization (PS) and Modified Projective Synchronization (MPS) of hyperchaotic attractors of a hyperchaotic complex Lorenz system which has been introduced recently in our work. The control problem of these attractors is also studied. Our system is a 6-dimensional continuous real autonomous hyperchaotic system. The active control method based on Lyapunov function is used to study PS and MPS of this system. The problem of hyperchaos control is treated by adding the complex periodic forcing. The control performances are verified by calculating Lyapunov exponents. Numerical simulations are implemented to verify the results of these investigations.


93C15 Control/observation systems governed by ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
Full Text: DOI


[1] Baier, G.; Sahle, S., Design of hyperchaotic flows, Phys. rev. E, 51, 2712-2714, (1995)
[2] Barboza, R., Dynamics of a hyperchaotic Lorenz system, Int. J. bifurcat. chaos, 17, 4285-4294, (2007) · Zbl 1143.37309
[3] Belykh, V.N.; Belykh, I.V.; Hasler, M., Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems, Phys. rev. E, 62, 632-6345, (2000)
[4] Bennett, M.; Schatz, M.F.; Rockwood, H.; Wiesenfeld, K., Huygens’ clocks, Proc. R. soc. lond. A, 458, 563-579, (2002) · Zbl 1026.01007
[5] Cafagna, D.; Grassi, G., New 3D-scroll attractors in hyperchaotic chua’s circuits forming a ring, Int. J. bifurcat. chaos, 13, 2889-2903, (2003) · Zbl 1057.37026
[6] Cao, L.-Y.; Lai, Y.-C., Antiphase synchronism in chaotic systems, Phys. rev. E, 58, 382-386, (1998)
[7] Chua, L.O.; Lin, G.N., Canonial realization of chua’s circuits family, IEEE trans. circuit syst., 37, 885-902, (1990) · Zbl 0706.94026
[8] Grosu, I.; Padmanaban, E.; Roy, P.K.; Dana, S.K., Designing coupling for synchronization and amplification of chaos, Phys. rev. lett., 100, 234102, (2008)
[9] Hu, J.; Chen, S.; Chen, L., Adaptive control for anti-synchronization of chua’s chaotic system, Phys. lett. A, 339, 455-460, (2005) · Zbl 1145.93366
[10] Jia, Q., Projective synchronization of a new hyperchaotic Lorenz system, Phys. lett. A, 370, 40-45, (2007) · Zbl 1209.93105
[11] Kapitaniak, T.; Chua, L.O.; Zhong, G.Q., Experimental hyperchaos in coupled chua’s circuits, IEEE trans. CAS, 41, 499-503, (1994)
[12] Kim, C.M.; Rim, S.; Kye, W.H.; Ryu, J.W.; Park, Y.J., Anti-synchronization of chaotic oscillators, Phys. lett. A, 320, 39-46, (2003) · Zbl 1098.37521
[13] Li, G.H., Generalized projective synchronization between Lorenz system and chen’s system, Chaos solitons fractals, 32, 1454-1458, (2007) · Zbl 1129.37013
[14] Li, C.; Liao, X., Anti-synchronization of a class of coupled chaotic systems via linear feedback control, Int. J. bifurcat. chaos, 16, 1041-1047, (2006) · Zbl 1097.94037
[15] Liu, W.; Xiao, J.; Qian, X.; Yang, J., Antiphase synchronization in coupled chaotic oscillators, Phys. rev. E, 73, 057203, (2006)
[16] Mahmoud, G.M.; Bountis, T., The dynamics of systems of complex nonlinear oscillators: a review, Int. J. bifurcat. chaos, 14, 3821-3846, (2004) · Zbl 1091.34524
[17] Mahmoud, G.M.; Ahmed, M.E.; Mahmoud, E.E., Analysis of hyperchaotic complex Lorenz systems, Int. J. mod. phys. C, 19, 1477-1494, (2008) · Zbl 1170.37311
[18] Mahmoud, G.M.; Al-Kashif, M.A.; Aly, S.A., Basic properties and chaotic synchronization of complex Lorenz system, Int. J. mod. phys. C, 18, 253-265, (2007) · Zbl 1115.37035
[19] G.M. Mahmoud, M.A. Al-Kashif, A.A. Farghaly, Chaotic and hyperchaotic attractors of a complex nonlinear system, J. Phys. A: Math. Theor. 41 (2008) 055104, doi:10.1088/1751-8113/41/5/055104. · Zbl 1131.37036
[20] Mahmoud, G.M.; Aly, S.A.; Al-Kashif, M.A., Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system, Nonlinear dyn., 51, 171-181, (2008) · Zbl 1170.70365
[21] Mahmoud, G.M.; Aly, S.A.; Farghaly, A.A., On chaos synchronization of a complex two coupled dynamos system, Chaos solitons fractals, 33, 178-187, (2007) · Zbl 1152.37317
[22] Mahmoud, G.M.; Bountis, T.; Abdel-Latif, G.M.; Mahmoud, E.E., Chaos synchronization of two different chaotic complex Chen and Lü systems, Nonlinear dyn., 55, 43-53, (2008) · Zbl 1170.70011
[23] Mahmoud, G.M.; Bountis, T.; Mahmoud, E.E., Active control and global synchronization of the complex Chen and Lü systems, Int. J. bifurcat. chaos, 17, 4295-4308, (2007) · Zbl 1146.93372
[24] Mainieri, R.; Rehacek, J., Projective synchronization in three-dimensional chaotic systems, Phys. rev. lett., 82, 3042-3046, (1999)
[25] Matsumoto, T.; Chua, L.O.; Kobayashi, K., Hyperchaos: laboratory experimental and numerical confirmation, IEEE trans. CAS, 33, 1143-1147, (1986)
[26] Nakata, S.; Miyata, T.; Ojima, N.; Yoshikawa, K., Synchronization in coupled salt – water oscillators, Physica D, 115, 313-320, (1998) · Zbl 0962.76505
[27] Peng, J.H.; Ding, E.J.; Ding, M.; Yang, W., Synchronizing hyperchaos with a scalar transmitted signal, Phys. rev. lett., 76, 904-907, (1996)
[28] Rössler, O.E., An equation for hyperchaos, Phys. lett. A, 71, 155-157, (1979) · Zbl 0996.37502
[29] Rulkov, N.F.; Sushckik, M.M.; Tsimring, L.S.; Abarbanel, H.D.I., Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. rev. E, 51, 980-994, (1995)
[30] Shinbrot, T.; Grebogi, C.; Ott, E.; Yorke, J., Using small perturbations to control chaos, Nature, 363, 411-417, (1993)
[31] Tamassevicius, A.; Cenys, A.; Mykolaitis, G.; Namajunas, A.; Lindberg, E., Hyperchaotic oscillators with gyrators, IEEE electron. lett., 33, 542-544, (1997)
[32] Tang, Y.; Fang, J., General methods for modified projective synchronization of hyperchaotic systems with known or unknown parameters, Phys. lett. A, 372, 1816-1826, (2008) · Zbl 1220.37027
[33] Wang, Y.W.; Guan, Z.H., Generalized synchronization of continuous chaotic systems, Chaos solitons fractals, 27, 97-101, (2006) · Zbl 1083.37515
[34] Wolf, A.; Swift, J.; Swinney, H.; Vastano, J., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317, (1985) · Zbl 0585.58037
[35] Xu, D.; Li, Z., Controlled projective synchronization in nonparametrically-linear chaotic systems, Int. J. bifurcat. chaos, 12, 1395-1402, (2002)
[36] Yu, X.; Song, Y., Chaos synchronization via controlling partial state of chaotic systems, Int. J. bifurcat. chaos, 11, 1737-1741, (2001)
[37] Zhang, Y.; Sun, J., Chaotic synchronization and anti-synchronization based on suitable separation, Phys. lett. A, 330, 442-447, (2004) · Zbl 1209.37039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.