×

Polaroid operators, SVEP and perturbed Browder, Weyl theorems. (English) Zbl 1196.47030

Summary: A Banach space operator \(T\in B(\mathcal X)\) is polaroid, \(T\in\mathcal P\), if the isolated points of the spectrum of \(T\) are poles of the resolvent of \(T\). Let \(\mathcal{PS}\) denote the class of operators in \(\mathcal P\) which have the single-valued extension property (SVEP). It is proved that, if \(\mathcal T\) is polynomially \(\mathcal{PS}\) and \(A\in B(\mathcal X)\) is an algebraic operator which commutes with \(T\), then \(f(T+A)\) satisfies Weyl’s theorem and \(f(T^*+A^*)\) satisfies \(a\)-Weyl’s theorem for every \(f\) which is holomorphic on a neighbourhood of \(\sigma(T+A)\).

MSC:

47B47 Commutators, derivations, elementary operators, etc.
47A10 Spectrum, resolvent
47A11 Local spectral properties of linear operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aiena P.,Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004. · Zbl 1077.47001
[2] Aiena P.,Classes of operators satisfying a-Weyl’s theorem, Studia Math.,169 (2005), 137–151. · Zbl 1071.47001
[3] Aiena P., Guillen J. R.,Weyl’s theorem for perturbations of paranormal operators, Proc. Amer. Math. Soc.,135 (2007), 2443–2451. · Zbl 1117.47003
[4] Benhida C., Zerouali E. H., Zguitti H.,Spectral properties of upper triangular block operators, Acta Sci. Math. (Szeged),71 (2005), 607–616. · Zbl 1105.47005
[5] Campbell S. L., Gupta B. C.,On k-quasihyponormal operators, Math. Japan.,23 (1978-79), 185–189. · Zbl 0398.47014
[6] Caradus S. R., Pfaffenberger W. E., Bertram Y.,Calkin Algebras and Algebras of operators on Banach Spaces, Marcel Dekker, New York, 1974. · Zbl 0299.46062
[7] Curto R. E., Han Y. M.,Weyl’s theorem, a-Weyl’s theorem and local spectral theory, J. London Math. Soc.,67 (2003) 499–509. · Zbl 1063.47001
[8] Curto R. E., Han Y. M.,Weyl’s theorem for algebraically paranormal operators, Integr. Equ. Oper. Th.,47 (2003), 307–314. · Zbl 1054.47018
[9] Duggal B. P., Djordjević S. V.,Weyl’s theorem in the class of algebraically phyponormal operators, Comment. Math. Prace Mat.,40 (2000), 49–56. · Zbl 0997.47019
[10] Duggal B. P., Harte R., Jeon I. H.,Polaroid operators and Weyl’s theorem, Proc. Am. Math. Soc.132, (2004), 1345–1349. · Zbl 1062.47004
[11] Duggal B. P.,Weyl’s theorem for totally hereditarily normaloid operator, Rend. Circ. Mat. Palermo,53 (2004), 237–249. · Zbl 1096.47038
[12] Duggal B. P.,Weyl’s theorem for algebraically totally hereditarily normaloid operators, J. Math. Anal. Appl.,308 (2005), 578–587. · Zbl 1160.47301
[13] Duggal B. P.,Hereditarily normaloid operators, Extracta Math.,20 (2005), 203–217. · Zbl 1097.47005
[14] Duggal B. P.,Perturbations and Weyl’s theorem, Proc. Amer. Math. Soc.,135 (2007), 2899–2905. · Zbl 1126.47002
[15] Dunford N., Schwartz J. T.,Linear Operators, Part I, Interscience, New York, 1964.
[16] Han Y. M., Lee W. Y.,Weyl’s theorem holds for algebraically hyponormal operators, Proc. Amer. Math. Soc.,128 (2000), 2291–2296. · Zbl 0953.47018
[17] Young Min Han, An-Hyun Kim,A note on *-paranormal operators, Integr. Equ. Oper. Th.,49 (2004), 435–444. · Zbl 1097.47022
[18] Young Min Han, Jun Ik Lee, Derming Wang,Riesz idempotents and Weyl’s theorem for w-hyponormal operators, Integr. Equ. Oper. Th.,53 (2005), 51–60. · Zbl 1100.47003
[19] Harte R. E., Lee W. Y.,Another note on Weyl’s theorem, Trans. Amer. Math. Soc.,349, 1997, 2115–2124. · Zbl 0873.47001
[20] Heuser H. G.,Functional Analysis, John Wiley and Sons, 1982. · Zbl 0465.47001
[21] Kato, T.,Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Math. Anal.,6 (1958), 261–322. · Zbl 0090.09003
[22] In Hyoun Kim,On (p, k)-quasihyponormal operators, Math. Inequal. Appl.,7 (2004), 629–638. · Zbl 1080.47023
[23] Laursen, K.B., Neumann M. M.,Introduct ion to local spectral theory, Clarendon Press, Oxford, 2000.
[24] Mbekhta M.,Généralisation de la dé composition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J.,29 (1987), 159–175. · Zbl 0657.47038
[25] Oudghiri M.,Weyl’s and Browder’s theorem for operators satisfying the SVEP, Studia Math.163 (2004), 85–101. · Zbl 1064.47004
[26] Oudghiri M.,Weyl’s theorem and perturbations, Integr. Equat. Op. Th.,53 (2005), 535–545. · Zbl 1098.47012
[27] Rakočević V.,On the essential approximate point spectrum II, Math. Vesnik,36 (1981) 89–97. · Zbl 0535.47002
[28] Rakočević V.,Operators obeying a-Weyl’s theorem, Rev. Roumaine Pures Appl.,34 (1989), 915–919. · Zbl 0686.47005
[29] Rakočević V.,Semi-Browder operators and perturbations, Studia Math.,122 (1997), 131–137.
[30] Schmoeger C.,On operators T such that Weyl’s theorem holds for f(T), Extracta Math.,13 (1998), 27–33. · Zbl 0977.47003
[31] Schmoeger C.,On totally paranormal operators, Bull. Austral. Math. Soc.,66 (2002), 425–441. · Zbl 1032.47004
[32] Tanahashi K., Uchiyama A., Chō M.,Isolated points of spectrum of (p.k)-quasihyponormal operators, Lin. Alg. Appl.,382 (2004), 221–229. · Zbl 1058.47020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.