×

Programs for the approximation of real and imaginary single- and multi-valued functions by means of Hermite-Padé-approximants. (English) Zbl 1196.65043

Summary: We present programs for the calculation and evaluation of special type Hermite-Padé-approximations. They allow the user to either numerically approximate multi-valued functions represented by a formal series expansion or to compute explicit approximants for them. The approximation scheme is based on Hermite-Padé polynomials and includes both Padé and algebraic approximants as limiting cases. The algorithm for the computation of the Hermite-Padé polynomials is based on a set of recursive equations which were derived from a generalization of continued fractions. The approximations retain their validity even on the cuts of the complex Riemann surface which allows for example the calculation of resonances in quantum mechanical problems. The programs also allow for the construction of multi-series approximations which can be more powerful than most summation methods.

MSC:

65D20 Computation of special functions and constants, construction of tables
41-04 Software, source code, etc. for problems pertaining to approximations and expansions

Software:

hp.sr; Maple; Mathematica
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Löwdin, P.O., Proceedings of the Sanibel workshop on perturbation theory at large order, Sanibel conference, florida, 1981, Int. J. quantum chem., 21, 1-209, (1982)
[2] ()
[3] Padé, H., Sur la généralisation des fractions continues algébriques, J. math. pures appl., 10, 291-329, (1894) · JFM 25.0681.01
[4] Borel, E., Mémoires sur LES séries divergentes, Ann. sci. ec. norm. sup. Paris, 16, 9-136, (1899) · JFM 30.0230.03
[5] Baker, G.A.; Graves-Morris, P., Padé approximants, (1996), Cambridge Univ. Press Cambridge, GB · Zbl 0923.41001
[6] Sergeev, A.V., Summation of the eigenvalue perturbation series by multi-valued Padé approximants: application to resonance problems and double wells, J. phys. A: math. gen., 28, 4157-4162, (1995) · Zbl 0859.34075
[7] Sergeev, A.V.; Goodson, D.Z., Summation of asymptotic expansions of multiple-valued functions using algebraic approximants: application to anharmonic oscillators, J. phys. A: math. gen., 31, 4301-4317, (1998) · Zbl 0931.34062
[8] T. Feil, Anwendung von Ein- und Mehrreihen-Hermite-Padé-Approximationsverfahren zur Summation divergenter Störungsreihen, Diploma Thesis, University of Regensburg, Germany, 2000
[9] Goodson, D.Z., Convergent summation of Møller – plesset perturbation theory, J. chem. phys., 112, 11, 4901-4909, (2000)
[10] P. Bracken, Interpolant polynomials in quantum mechanics and study of the one dimensional Hubbard model, Ph.D. Thesis, University of Waterloo, 1994
[11] Bracken, P.; Čı́žek, J., Construction of interpolant polynomials for approximating eigenvalues of a Hamiltonian which is dependent on a coupling constant, Phys. lett. A, 194, 337-342, (1994)
[12] Bracken, P.; Čı́žek, J., Investigation of the \(\^{}\{1\} E2g\^{}\{−\}\) states in cyclic polyenes, Int. J. quantum chem., 53, 467-471, (1995)
[13] Bracken, P.; Čı́žek, J., Interpolant polynomial technique applied to the PPP model. I. asymptotics for excited states of cyclic polyenes in the finite cyclic Hubbard model, Int. J. quantum chem., 57, 1019-1032, (1996)
[14] Čı́žek, J.; Bracken, P., Interpolant polynomial technique applied to the PPP model. II. testing the interpolant technique on the Hubbard model, Int. J. quantum chem., 57, 1033-1048, (1996)
[15] Downing, J.W.; Michl, J.; Čı́žek, J.; Paldus, J., Multidimensional interpolation by polynomial roots, Chem. phys. lett., 67, 377-380, (1979)
[16] Takahashi, M.; Bracken, P.; Čı́žek, J.; Paldus, J., Perturbation expansion of the ground state energy for the one-dimensional cyclic Hubbard system in the Hückel limit, Int. J. quantum chem., 53, 457-466, (1995)
[17] Čı́žek, J.; Weniger, E.J.; Bracken, P.; Špirko, V., Effective characteristic polynomials and two-point Padé approximants as summation techniques for the strongly divergent perturbation expansions of the ground state energies of anharmonic oscillators, Phys. rev. E, 53, 2925-2939, (1996)
[18] H.H.H. Homeier, Extrapolationsverfahren für Zahlen-, Vektor- und Matrizenfolgen und ihre Anwendung in der Theoretischen und Physikalischen Chemie, Habilitation Thesis, University of Regensburg, Germany, 1996
[19] Homeier, H.H.H., Correlation energy estimators based on Møller – plesset perturbation theory, J. mol. struct. (theochem), 366, 161-171, (1996)
[20] Homeier, H.H.H., The size-extensivity of correlation energy estimators based on effective characteristic polynomials, J. mol. struct. (theochem), 419, 29-31, (1997), Proceedings of the 3rd Electronic Computational Chemistry Conference · Zbl 0939.65001
[21] Homeier, H.H.H.; Neef, M.D., Performance of the effective-characteristic-polynomial π2 method for diatomic molecules: basis-set dependencies and vibrational levels, Internet J. chem., 3, (2000), Proceedings of the 5th Electronic Computational Chemistry Conference
[22] Homeier, H.H.H.; Homeier, H.H.H., On the extrapolation of perturbation series, (), 61, 1/3, 133-147, (2000) · Zbl 0939.65001
[23] Sergeev, A., A recursive algorithm for padé-hermite approximations, Comput. math. math. phys., 26, 2, 17-22, (1986), Engl. transl · Zbl 0621.65005
[24] Hermite, C., Sur la généralisation des fractions continues algébriques, Ann. math. pura appl., 21, 289-308, (1893) · JFM 25.0325.02
[25] Bender, C.M.; Orszag, S.A., Advanced mathematical methods for scientists and engineers, (1978), McGraw-Hill New York · Zbl 0417.34001
[26] Char, B.W.; Geddes, K.O.; Gonnet, G.H.; Leong, B.L.; Monagan, M.B.; Watt, S.M., Maple V language reference manual, Berlin, (1991) · Zbl 0758.68038
[27] Char, B.W.; Geddes, K.O.; Gonnet, G.H.; Leong, B.L.; Monagan, M.B.; Watt, S.M., Maple V library reference manual, Berlin, (1991) · Zbl 0763.68046
[28] Wolfram, S., Mathematica: A system for doing mathematics by computer, (1991), Addison-Wesley Redwood City, CA
[29] Bender, C.M.; Wu, T.T., Anharmonic oscillator, Phys. rev., 184, 1231-1260, (1969)
[30] Simon, B., Coupling constant analyticity for the anharmonic oscillator, Ann. phys., 58, 76-136, (1970)
[31] Killingbeck, J., The harmonic oscillator with λxM perturbation, J. phys. A, 13, 49-56, (1980) · Zbl 0428.65051
[32] Weniger, E.J., A convergent renormalized strong coupling perturbation expansion for the ground state energy of the quartic, sextic, and octic anharmonic oscillator, Ann. phys., 246, 133-165, (1996) · Zbl 0877.47041
[33] Arteca, G.A.; Fernández, F.M.; Castro, E.A., Large order perturbation theory and summation methods in quantum mechanics, (1990), Springer Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.