# zbMATH — the first resource for mathematics

Interval oscillation criteria for second-order forced delay dynamic equations with mixed nonlinearities. (English) Zbl 1197.34117
Summary: Interval oscillation criteria are established for second-order forced delay dynamic equations on time scales containing mixed nonlinearities of the form
$(r(t)\Phi_\alpha(x^\Delta(t)))^\Delta+p_0(t)\Phi_\alpha(x(\tau_0(t)))+\sum^n_{i=1}p_i(t)\Phi_{\beta_i}(x(\tau_i(t)))=e(t),\quad t\in[t_0,\infty)_{\mathbb T}$
where $$\mathbb T$$ is a time scale, $$t_0\in\mathbb T$$ a fixed number; $$[t_0,\infty)_{\mathbb T}$$ is a time scale interval; $$\Phi_*(u)=|u|^{*-1}u$$; the functions $$r,p_i,e:[t_0,\infty)_{\mathbb T}\to\mathbb R$$ are right-dense continuous with $$r>0$$ nondecreasing; $$\tau_k:\mathbb T\to\mathbb T$$ are nondecreasing right-dense continuous with $$\tau_k(t)\leq t$$, $$\lim_{t\to\infty}\tau_k(t)=\infty$$; and the exponents satisfy
$\beta_1\geq\cdots\geq \beta_m>\alpha>\beta_{m+1}\geq \cdots\beta_n>0.$
All results are new even for $$\mathbb T=\mathbb R$$ and $$\mathbb T=\mathbb Z$$. Analogous results for related advance type equations are also given, as well as extended delay and advance equations. The theory can be applied to second-order dynamic equations regardless of the choice of delta or nabla derivatives. Two examples are provided to illustrate one of the theorems.

##### MSC:
 34K11 Oscillation theory of functional-differential equations 34N05 Dynamic equations on time scales or measure chains
Full Text:
##### References:
  Hilger, S., Analysis on measure chains — A unified approach to continuous and discrete calculus, Results math., 18, 18-56, (1990) · Zbl 0722.39001  Agarwal, R.P.; O’Regan, D.; Saker, S.H., Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. math. anal. appl., 300, 203-217, (2004) · Zbl 1062.34068  Agarwal, R.P.; O’Regan, D.; Saker, S.H., Oscillation criteria for nonlinear perturbed dynamic equations of second-order on time scales, J. appl. math. computing, 20, 1-2, 133-147, (2006) · Zbl 1089.39001  Agarwal, R.P.; Zafer, A., Oscillation criteria for second order forced dynamic equations with mixed nonlinearities, Adv. differential equations, (2009), Article ID 938706, 20 pages · Zbl 1181.34099  Anderson, D.R., Oscillation of second-order forced functional dynamic equations with oscillatory potentials, J. difference equ. appl., 13, 5, 407-421, (2007) · Zbl 1123.34051  Anderson, D.R., Interval criteria for oscillation of nonlinear second-order dynamic equations on time scales, Nonlinear anal., 69, 4614-4623, (2008) · Zbl 1167.34008  D.R. Anderson, A. Zafer, Interval criteria for second-order super-half-linear functional dynamic equations with delay and advanced arguments, J. Diff. Equations and Appl. (in press) · Zbl 1205.34126  Bohner, M.; Tisdell, C., Oscillation and nonoscillation of forced second order dynamic equations, Pacific J. math., 230, 1, 59-71, (2007) · Zbl 1160.34029  Bohner, M.; Peterson, A., Dynamic equations on time scales, an introduction with applications, (2001), Birkhäuser Boston · Zbl 0978.39001  Došlý, O.; Marek, D., Half-linear dynamic equations with mixed derivatives, Electron J. differential equations, 2005, 1-18, (2005) · Zbl 1092.39004  Erbe, L.; Peterson, A.; Saker, S.H., Kamenev-type oscillation criteria for second-order linear delay dynamic equations, Dynamic syst. & appl., 15, 65-78, (2006) · Zbl 1104.34026  Erbe, L.; Peterson, A.; Saker, S.H., Hille-Kneser-type criteria for second-order linear dynamic equations, Adv. differential equations, 2006, 1-18, (2006) · Zbl 1229.34136  Erbe, L.; Peterson, A.; Saker, S.H., Oscillation criteria for second-order nonlinear delay dynamic equations, J. math. anal. appl., 333, 505-522, (2007) · Zbl 1125.34046  Řehák, P., Half-linear dynamic equations on time scales: IVP and oscillatory properties, Nonlinear func. anal. appl., 7, 361-403, (2002) · Zbl 1037.34002  Řehák, P., Hardy inequality on time scales and its applications to half-linear dynamic equations, J. ineq. appl., 5, 495-507, (2005) · Zbl 1107.26015  Saker, S.H., Oscillation criteria of second-order half-linear dynamic equations on time scales, J. comput. appl. math., 177, 375-387, (2005) · Zbl 1082.34032  ()  Agarwal, R.P.; Grace, S.R., Oscillation theory for difference and functional differential equations, (2002), Kluwer Academic Dordrecht · Zbl 1061.34047  Agarwal, R.P.; Grace, S.R.; O’Regan, D., Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, (2002), Kluwer Academic Publishers Dordrecht · Zbl 1073.34002  Došlý, O.; Řehák, P., Half-linear differential equations, (2005), Elsevier North-Holland · Zbl 1006.39012  Sun, Y.G.; Wong, J.S.W., Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. math. anal. appl., 334, 549-560, (2007) · Zbl 1125.34024  El-Sayed, M.A., An oscillation criterion for a forced second order linear differential equation, Proc. amer. math. soc., 118, 813-817, (1993) · Zbl 0777.34023  Nasr, A.H., Sufficient conditions for the oscillation of forced superlinear second order differential equations with oscillatory potential, Proc. amer. math. soc., 126, 123-125, (1998) · Zbl 0891.34038  Wong, J.S.W., Oscillation criteria for a forced second order linear differential equation, J. math. anal. appl., 231, 235-240, (1999) · Zbl 0922.34029  Sun, Y.G.; Meng, F.W., Interval criteria for oscillation of second-order differential equations with mixed nonlinearities, Appl. math. comput., 198, 375-381, (2008) · Zbl 1141.34317  Kong, Q., Interval criteria for oscillation of second order linear ordinary differential equations, J. math. anal. appl., 229, 258-270, (1999) · Zbl 0924.34026  Sun, Y.G., A note on nasr’s and wong’s papers, J. math. anal. appl., 286, 363-367, (2003) · Zbl 1042.34096  A. Zafer, Interval oscillation criteria for second order super-half-linear functional differential equations with delay and advanced arguments, Math. Nachr. (in press) · Zbl 1180.34070  Sun, Y.G.; Ou, C.H.; Wong, J.S.W., Interval oscillation theorems for a linear second order differential equation, Comput. math. appl., 48, 1693-1699, (2004) · Zbl 1069.34049  Sun, Y.G.; Agarwal, R.P., Interval oscillation criteria for higher order forced nonlinear differential equations, Nonlinear func. anal. appl., 9, 441-449, (2004) · Zbl 1075.34031  Li, W.T., Interval oscillation of second-order half-linear functional differential equations, Appl. math. comput., 155, 451-468, (2004) · Zbl 1061.34048  Li, W.T.; Cheng, S.S., An oscillation criteria for nonhomogeneous half-linear differential equations, Appl. math. lett., 15, 259-263, (2002) · Zbl 1023.34029  Yang, Q., Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential, Appl. math. comput., 136, 49-64, (2003) · Zbl 1030.34034  Yu, Y.H., Oscillations caused by several retarded and advanced arguments, Acta math. appl. sinica, 6, 67-73, (1990), (English Ser.) · Zbl 0701.34078  Beckenbach, E.F.; Bellman, R., Inequalities, (1961), Springer Berlin · Zbl 0206.06802  Čermák, J.; Kundrát, P.; Urbánek, Miroslav, Delay equations on time scales: essentials and asymptotics of the solutions, J. difference equ. appl., 14, 6, 567-580, (2008) · Zbl 1154.39019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.