×

zbMATH — the first resource for mathematics

Synchronization of fractional order chaotic systems. (English) Zbl 1197.37040
Summary: The chaotic dynamics of fractional order systems have attracted much attentions recently. In this Letter, we study the synchronization of the fractional order chaotic systems with a unidirectional linear error feedback coupling. The numerical results show that the fractional order chaotic systems can also be synchronized.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34A08 Fractional ordinary differential equations and fractional differential inclusions
93D15 Stabilization of systems by feedback
34H05 Control problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Yverdon · Zbl 0818.26003
[2] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[3] Hilfer, R., Applications of fractional calculus in physics, (2001), World Scientific New Jersey · Zbl 0998.26002
[4] Gaul, L.; Klein, P.; Kempfle, S., Mech. syst. sign. proc., 5, 81, (1991)
[5] Walter, G.G.; Theo, F.N., Biophys. J., 68, 46, (1995)
[6] Metzler, R.; Schick, W.; Kilian, H.G.; Theo, F.N., J. chem. phys., 103, 7180, (1995)
[7] Hartley, T.T.; Lorenzo, C.F.; Qammer, H.K., IEEE trans. circuits systems I, CAS-42, 485, (1995)
[8] Ahmad, W.M.; Sprott, J.C., Chaos solitons fractals, 16, 339, (2003)
[9] Ahmad, W.M.; Harb, W.M., Chaos solitons fractals, 18, 693, (2003)
[10] Li, C.; Chen, G., Physica A, 341, 55, (2004)
[11] Zhang, H.B.; Li, C.; Chen, G.; Gao, X., Int. J. mod. phys. C, 16, 1, (2005)
[12] Pecora, L.M.; Carroll, T.L., Phys. rev. lett., 64, 821, (1990)
[13] Li, C.; Liao, X.; Yu, J., Phys. rev. E, 68, 067203, (2003)
[14] Caputo, M., Geophys. J. R. astron. soc., 13, 529, (1967)
[15] Keil, F.; Mackens, W.; Werther, J., Scientific computing in chemical engineering II-computational fluid dynamics, reaction engineering, and molecular properties, (1999), Springer-Verlag Heidelberg
[16] Charef, A.; Sun, H.H.; Tsao, Y.Y.; Onaral, B., IEEE trans. automat. control, 37, 1465, (1992)
[17] Diethelm, K.; Ford, N.J., J. math. anal. appl., 265, 229, (2002)
[18] Diethelm, K.; Freed, A.D.; Ford, N.J., Nonlinear dynam., 29, 3, (2002)
[19] Jiang, G.P.; Tang, K.S.; Chen, G., Chaos solitons fractals, 15, 925, (2003)
[20] Chua, L.; Deng, A., IEEE trans. circuits systems I, 33, 511, (1986)
[21] Rössler, O.E., Phys. lett. A, 57, 397, (1976)
[22] Chen, G.; Ueta, T., Int. J. bifur. chaos, 9, 1465, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.