Golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs. (English) Zbl 1197.81004

Summary: We present a program for the numerical evaluation of form factors entering the calculation of one-loop amplitudes with up to six external legs. The program is written in Fortran95 and performs the reduction to a certain set of basis integrals numerically, using a formalism where inverse Gram determinants can be avoided. It can be used to calculate one-loop amplitudes with massless internal particles in a fast and numerically stable way.


81-04 Software, source code, etc. for problems pertaining to quantum theory
65D30 Numerical integration
Full Text: DOI arXiv


[1] Bern, Z., The NLO multileg working group: summary report, (2008)
[2] van Oldenborgh, G.J.; Vermaseren, J.A.M., New algorithms for one loop integrals, Z. phys. C, 46, 425-438, (1990)
[3] Mertig, R.; Bohm, M.; Denner, Ansgar, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. phys. commun., 64, 345-359, (1991)
[4] Hahn, T.; Perez-Victoria, M., Automatized one-loop calculations in four and D dimensions, Comput. phys. commun., 118, 153-165, (1999)
[5] Yuasa, F., Automatic computation of cross sections in HEP: status of GRACE system, Prog. theor. phys. suppl., 138, 18-23, (2000)
[6] Hahn, Thomas, Generating Feynman diagrams and amplitudes with feynarts 3, Comput. phys. commun., 140, 418-431, (2001) · Zbl 0994.81082
[7] Binoth, T.; Guillet, J.Ph.; Heinrich, G.; Pilon, E.; Schubert, C., An algebraic/numerical formalism for one-loop multi-leg amplitudes, Jhep, 0510, 015, (2005)
[8] Denner, Ansgar; Dittmaier, S.; Roth, M.; Wieders, L.H., Electroweak corrections to charged-current \(e^+ e^-\) to 4 fermion processes: technical details and further results, Nucl. phys. B, 724, 247-294, (2005)
[9] Denner, Ansgar; Dittmaier, S., Reduction schemes for one-loop tensor integrals, Nucl. phys. B, 734, 62-115, (2006) · Zbl 1192.81158
[10] Keith Ellis, R.; Giele, W.T.; Zanderighi, G., Semi-numerical evaluation of one-loop corrections, Phys. rev. D, 73, 014027, (2006)
[11] Ossola, Giovanni; Papadopoulos, Costas G.; Pittau, Roberto, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. phys. B, 763, 147-169, (2007) · Zbl 1116.81067
[12] Binoth, T.; Guillet, J.Ph.; Heinrich, G., Algebraic evaluation of rational polynomials in one-loop amplitudes, Jhep, 0702, 013, (2007)
[13] Anastasiou, Charalampos; Britto, Ruth; Feng, Bo; Kunszt, Zoltan; Mastrolia, Pierpaolo, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, Jhep, 0703, 111, (2007)
[14] Bern, Zvi; Dixon, Lance J.; Kosower, David A., On-shell methods in perturbative QCD, Ann. physics, 322, 1587-1634, (2007) · Zbl 1122.81077
[15] Ellis, R.K.; Giele, W.T.; Kunszt, Z., A numerical unitarity formalism for evaluating one-loop amplitudes, Jhep, 0803, 003, (2008)
[16] Kilgore, William B., One-loop integral coefficients from generalized unitarity, (2007)
[17] Britto, Ruth; Feng, Bo; Mastrolia, Pierpaolo, Closed-form decomposition of one-loop massive amplitudes, Phys. rev. D, 78, 025031, (2008)
[18] Britto, Ruth; Feng, Bo; Yang, Gang, Complete one-loop amplitudes with massless propagators, Jhep, 0809, 089, (2008) · Zbl 1245.81116
[19] Giele, Walter T.; Kunszt, Zoltan; Melnikov, Kirill, Full one-loop amplitudes from tree amplitudes, Jhep, 0804, 049, (2008) · Zbl 1246.81170
[20] Mastrolia, P.; Ossola, G.; Papadopoulos, C.G.; Pittau, R., Optimizing the reduction of one-loop amplitudes, Jhep, 0806, 030, (2008)
[21] Catani, Stefano; Gleisberg, Tanju; Krauss, Frank; Rodrigo, German; Winter, Jan-Christopher, From loops to trees by-passing Feynman’s theorem, (2008) · Zbl 1245.81117
[22] Ellis, R. Keith; Giele, Walter T.; Kunszt, Zoltan; Melnikov, Kirill, Masses, fermions and generalized D-dimensional unitarity, (2008) · Zbl 1196.81234
[23] Glover, E.W. Nigel; Mastrolia, Pierpaolo; Williams, Ciaran, One-loop phi-MHV amplitudes using the unitarity bootstrap: the general helicity case, Jhep, 0808, 017, (2008)
[24] Hahn, T.; Illana, J.I., Excursions into feynarts and formcalc, Nucl. phys. (proc. suppl.), 160, 101-105, (2006)
[25] Hahn, Thomas; Rauch, Michael, News from formcalc and looptools, Nucl. phys. (proc. suppl.), 157, 236-240, (2006)
[26] Ossola, Giovanni; Papadopoulos, Costas G.; Pittau, Roberto, Cuttools: A program implementing the OPP reduction method to compute one-loop amplitudes, Jhep, 0803, 042, (2008)
[27] Berger, C.F., An automated implementation of on-shell methods for one-loop amplitudes, Phys. rev. D, 78, 036003, (2008)
[28] Giele, W.T.; Zanderighi, G., On the numerical evaluation of one-loop amplitudes: the gluonic case, (2008)
[29] Gleisberg, Tanju; Krauss, Frank, Automating dipole subtraction for QCD NLO calculations, Eur. phys. J. C, 53, 501-523, (2008)
[30] Seymour, Michael H.; Tevlin, Christopher, Tevjet: A general framework for the calculation of jet observables in NLO QCD, (2008)
[31] Hasegawa, K.; Moch, S.; Uwer, P., Automating dipole subtraction, (2008) · Zbl 1219.81244
[32] Frederix, Rikkert; Gehrmann, Thomas; Greiner, Nicolas, Automation of the dipole subtraction method in madgraph/madevent, (2008)
[33] Ellis, R. Keith; Zanderighi, Giulia, Scalar one-loop integrals for QCD, Jhep, 0802, 002, (2008)
[34] Bern, Zvi; Dixon, Lance J.; Kosower, David A., Dimensionally regulated pentagon integrals, Nucl. phys. B, 412, 751-816, (1994) · Zbl 1007.81512
[35] Davydychev, Andrei I., A simple formula for reducing Feynman diagrams to scalar integrals, Phys. lett. B, 263, 107-111, (1991)
[36] Tarasov, O.V., Connection between Feynman integrals having different values of the space – time dimension, Phys. rev. D, 54, 6479-6490, (1996) · Zbl 0925.81121
[37] Bern, Zvi; Dixon, Lance J.; Kosower, David A., Dimensionally regulated one loop integrals, Phys. lett. B, 302, 299-308, (1993)
[38] Binoth, T.; Guillet, J.P.; Heinrich, G., Reduction formalism for dimensionally regulated one-loop N-point integrals, Nucl. phys, B, 572, 361-386, (2000)
[40] Kleiss, R.; Stirling, W. James; Ellis, S.D., A new Monte Carlo treatment of multiparticle phase space at high energies, Comput. phys. commun., 40, 359, (1986)
[41] Binoth, T.; Glover, E.W. Nigel; Marquard, P.; van der Bij, J.J., Two-loop corrections to light-by-light scattering in supersymmetric QED, Jhep, 0205, 060, (2002)
[42] Bernicot, Christophe, Light-light amplitude from generalized unitarity in massive QED, (2008)
[43] Binoth, T.; Guillet, J.P.; Mahmoudi, F., A compact representation of the gamma gamma g g g to 0 amplitude, Jhep, 0402, 057, (2004)
[44] Eden, R.J.; Landshoff, P.V.; Olive, David I.; Polkinghorne, J.C., The analytic S-matrix, (1966), Cambridge University Press · Zbl 0139.46204
[45] Nagy, Zoltan; Soper, Davison E., Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. rev. D, 74, 093006, (2006)
[46] Duplancic, G.; Nizic, B., Reduction method for dimensionally regulated one-loop N-point Feynman integrals, Eur. phys. J. C, 35, 105-118, (2004) · Zbl 1191.81116
[47] Bernicot, C.; Guillet, J.Ph., Six-photon amplitudes in scalar QED, Jhep, 0801, 059, (2008)
[48] Binoth, T.; Heinrich, G.; Kauer, N., A numerical evaluation of the scalar hexagon integral in the physical region, Nucl. phys. B, 654, 277-300, (2003) · Zbl 1010.81060
[49] Press, W.H.; Teukolsky, S.A.; Vetterlin, W.T.; Flannery, B.P., Numerical recipes, (2007), 3rd edition Cambridge University Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.