×

Anisotropic Bianchi type V perfect fluid cosmological models in Lyra’s geometry. (English) Zbl 1197.83128

Summary: The law of variation for the mean Hubble parameter with average scale factor in an anisotropic Bianchi type V cosmological space-time is discussed within the frame work of Lyra’s manifold. The variation of Hubble’s parameter, which gives a constant value of deceleration parameter, generates two types of solutions for the average scale factor; one is the power-law and the other one is of exponential form. Using these two forms, new classes of exact solutions of the field equations are found for a Bianchi type V space-time filled with perfect fluid in Lyra’s geometry by considering a time-dependent displacement field. The physical and kinematical behaviors of the singular and non-singular models of the universe are examined. Exact expressions for look-back time, luminosity distance and event horizon versus redshift are also derived and their significance are discussed in detail. It has been observed that the solutions are compatible with the results of recent observations.

MSC:

83F05 Relativistic cosmology
83C15 Exact solutions to problems in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Folland, G., Weyl manifolds, J. differential geom., 4, 145-153, (1970) · Zbl 0195.23904
[2] Lyra, G., Über eine, modifikation der riemannschen geomtrie, Math. Z., 54, 52-54, (1951) · Zbl 0042.15902
[3] Sen, D.K., A static cosmological model, Z. Fûrr. phys., 149, 311-323, (1957) · Zbl 0078.19501
[4] Sen, D.K.; Dunn, K.A., A scalar-tensor theory of gravitation in a modified Riemannian manifold, J. math. phys., 12, 578-586, (1971) · Zbl 0211.24804
[5] Halford, W.D., Cosmological theory based on lyra’s geometry, Aust. J. phys., 23, 863-869, (1970)
[6] Soleng, H.H., Cosmologies based on lyra’s geometry, Gen. relativity gravitation, 19, 1213-1216, (1987)
[7] Hoyle, F., A new model for the expanding universe, Mon. not. R. astron. soc., 108, 372, (1948) · Zbl 0031.38304
[8] Hoyle, F.; Narlikar, J.V., On the avoidance of singularities in C-field cosmology, Proc. roy. soc. lond. ser, A 278, 465-478, (1964) · Zbl 0116.44701
[9] Hoyle, F.; Narlikar, J.V., Time symmetric electrodynamics and the arrow of the time in cosmology, Proc. roy. soc. lond. ser, A 227, 1-23, (1964) · Zbl 0118.23404
[10] Beesham, A., FLRW cosmological models in lyra’s manifold with time dependent displacement field, Aust. J. phys., 41, 833-842, (1988)
[11] Singh, T.; Singh, G.P., Bianchi type I cosmological models in lyra geometry, J. math. phys., 32, 2456-2458, (1991) · Zbl 0736.76084
[12] Singh, T.; Singh, G.P., Bianchi type II cosmological models in lyra geometry, Nuovo cimento., B 106, 617-622, (1991) · Zbl 0735.76095
[13] Singh, T.; Singh, G.P., Bianchi type III and kantowski – sachs cosmological models in lyra geometry, Internat. J. theoret. phys., 31, 1433-1446, (1992)
[14] Singh, T.; Singh, G.P., Lyra’s geometry and cosmology: a review, Fortschr. phys., 41, 737-764, (1993)
[15] Singh, G.P.; Desikan, K., A new class of cosmological models in lyra geometry, Pramana J. phys., 49, 205-212, (1997)
[16] Ram, Shri; Singh, P., Anisotropic cosmological models of Bianchi types III and V in lyra’s geometry, Internat. J. theoret. phys., 31, 2095-2102, (1992)
[17] Singh, C.P., Early cosmological models in lyra’s geometry, Astrophys. space sci., 275, 377-383, (2003) · Zbl 0977.83128
[18] Pradhan, A.; Vishwakarma, A.K., A new class of LRS Bianchi type I cosmological models in lyra geometry, J. geom. phys., 49, 332-342, (2004) · Zbl 1069.83500
[19] Rahaman, F.; Begum, N.; Bag, G.; Bhui, B.C., Cosmological models with negative constant deceleration parameter in lyra geometry, Astrophys. space sci., 299, 211-218, (2005)
[20] Kumar, S.; Singh, C.P., An exact Bianchi type -I cosmological models in lyra’s manifolds, Int. J. mod. phys. A, 23, 813-822, (2008) · Zbl 1151.83314
[21] Berman, M.S., A special law of variation for hubble’s parameter, IL nuovo cimento, B 74, 182-186, (1983)
[22] Vishwakarma, R.G., Is the present expansion of the universe really accelerating, Mon. not. R. astron. soc., 345, 545-551, (2003)
[23] Berman, M.S.; Gomide, F.M., Cosmological models with constant deceleration parameter, Gen. relativity gravitation, 20, 191-198, (1988)
[24] Maharaj, S.D.; Naidoo, R., Solutions to the field equations and the deceleration parameter, Astrophys. space sci., 208, 261-276, (1993) · Zbl 0806.53080
[25] Johri, V.B.; Desikan, K., Cosmological models with constant deceleration parameter in Brans-Dicke theory, Gen. relativity gravitation, 26, 1217-1231, (1994)
[26] Pradhan, A.; Yadav, V.K.; Chakraborty, I., Bulk viscous FRW cosmology in lyra geometry, Internat. J. modern phys., D 10, 339-349, (2001)
[27] Singh, C.P.; Kumar, S., Bianchi type -II cosmological models with constant deceleration parameter, Internat. J. modern phys., D 15, 419-438, (2006) · Zbl 1101.83338
[28] Singh, C.P.; Kumar, S., Bianchi type -II inflationary models with constant deceleration parameter in general relativity, Pramana J. phys., 68, 707-720, (2007)
[29] Singh, C.P.; Kumar, S., Bianchi type -II space – times with constant deceleration parameter in self creation cosmology, Astrophys. space sci., 310, 31-39, (2007)
[30] Reddy, D.R.K.; Subba Rao, M.V.; Koteswara, R.G., A cosmological model with negative constant deceleration parameter in a scalar-tensor theory, Astrophys. space sci., 306, 171-174, (2006)
[31] Reddy, D.R.K.; Naidoo, R.L.; Rao, V.U.M., A cosmological models with negative constant deceleration parameter in Brans-Dicke theory, Internat. J. theoret. phys., 46, 1443-1448, (2007) · Zbl 1122.83008
[32] Singh, T.; Chaubey, R., Bianchi type V universe with a viscous fluid and \(\Lambda\)-term, Pramana J. phys., 68, 721-734, (2007)
[33] Kumar, S.; Singh, C.P., Anisotropic Bianchi type -I models with constant deceleration parameter, Astrophys. space sci., 312, 57-62, (2007) · Zbl 1162.83311
[34] Saha, B.; Rikhvitsky, V., Bianchi type I universe with viscous fluid and a \(\Lambda\) term: a qualitative analysis, Physica D, 219, 168-176, (2006) · Zbl 1101.85008
[35] Collins, C.B.; Hawking, S.W., Why is universe isotropic, Astrophys. J., 180, 317-334, (1973)
[36] Ellis, G.F.R., General relativity and cosmology, (1971), Academic Press New York · Zbl 0337.53058
[37] Hawking, S.W.; Ellis, G.F.R., The large-scale structure of space – time, (1973), Cambridge University Press Cambridge · Zbl 0265.53054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.