×

zbMATH — the first resource for mathematics

An application of the fuzzy ELECTRE method for supplier selection. (English) Zbl 1197.90327
Summary: Supplier selection is vital to the success of a manufacturing firm. Supplier selection is a multi-criteria decision-making problem and is of strategic importance for most companies. As the conventional methods for supplier selection are inadequate for dealing with the imprecise or vague nature of linguistic assessment, a new method called the fuzzy technique for ELECTRE (ELimination Et Choix Traduisant la REalité) is proposed. The aim of this study is to compare and contrast crisp and fuzzy ELECTRE methods for supplier selection. The proposed methods are applied to a manufacturing company in Turkey. After determining the criteria that affect the supplier selection decisions, the results for both crisp and fuzzy ELECTRE methods are presented.

MSC:
90C29 Multi-objective and goal programming
90B50 Management decision making, including multiple objectives
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.cor.2006.01.003 · Zbl 1127.90361 · doi:10.1016/j.cor.2006.01.003
[2] DOI: 10.1080/00207540600724849 · Zbl 1128.90509 · doi:10.1080/00207540600724849
[3] DOI: 10.1287/mnsc.17.4.B141 · Zbl 0224.90032 · doi:10.1287/mnsc.17.4.B141
[4] Belton V, Multiple criteria decision nalysis (2002) · doi:10.1007/978-1-4615-1495-4
[5] Benayoun, R, Roy, B and Sussman, B. 1966. ”ELECTRE: une méthode pour guider le choix en présence de points de vue multiples. Note de travail 49”. SEMA-METRA International, Direction Scientifique.
[6] DOI: 10.1080/00207540600787200 · Zbl 1140.90335 · doi:10.1080/00207540600787200
[7] DOI: 10.1016/S0165-0114(97)00377-1 · Zbl 0963.91030 · doi:10.1016/S0165-0114(97)00377-1
[8] DOI: 10.1016/j. ijpe.2005.03.009 · doi:10.1016/j. · doi:ijpe.2005.03.009
[9] DOI: 10.1002/int.4550070507 · Zbl 0756.90001 · doi:10.1002/int.4550070507
[10] DOI: 10.1080/00207540600654483 · Zbl 1128.90517 · doi:10.1080/00207540600654483
[11] Ertugrul I, The International Journal of Advanced Manufacturing Technology (2008)
[12] DOI: 10.1016/S0165-0114(99)00024-X · Zbl 1073.91528 · doi:10.1016/S0165-0114(99)00024-X
[13] DOI: 10.1016/0165-0114(95)00107-7 · doi:10.1016/0165-0114(95)00107-7
[14] DOI: 10.1016/j.apm.2006.10.002 · Zbl 1149.90350 · doi:10.1016/j.apm.2006.10.002
[15] DOI: 10.1080/00207540600665836 · Zbl 1128.90522 · doi:10.1080/00207540600665836
[16] DOI: 10.1016/S0925-5273(03)00099-9 · doi:10.1016/S0925-5273(03)00099-9
[17] Kaufmann A, Introduction to fuzzy arithmetic: theory and applications (1991) · Zbl 0754.26012
[18] DOI: 10.1080/00207540600622431 · Zbl 1128.90416 · doi:10.1080/00207540600622431
[19] DOI: 10.1016/j.omega.2006.01.004 · doi:10.1016/j.omega.2006.01.004
[20] Roy B, Cahiers de CERO 20 pp 3– (1978)
[21] Roy B, Méthodologie multicritère d’aide à la décision (1985)
[22] Roy B, Multicriteria for decision aiding (1996) · doi:10.1007/978-1-4757-2500-1
[23] Roy B, Operational research 1972 pp 291– (1973)
[24] DOI: 10.1080/00207540600957399 · Zbl 1128.90537 · doi:10.1080/00207540600957399
[25] Vincke P, Multicriteria decision-aid (1992)
[26] DOI: 10.1016/j.omega.2005.12.003 · doi:10.1016/j.omega.2005.12.003
[27] Willis HT, Production and Inventory Management Journal 34 pp 1– (1993)
[28] Yoon KP, Sage University Paper (1995)
[29] DOI: 10.1016/0020-0255(75)90036-5 · Zbl 0397.68071 · doi:10.1016/0020-0255(75)90036-5
[30] DOI: 10.1016/0020-0255(75)90046-8 · Zbl 0404.68074 · doi:10.1016/0020-0255(75)90046-8
[31] Zimmermann HJ, Fuzzy set theory and its applications (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.