# zbMATH — the first resource for mathematics

The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects. (English) Zbl 1198.34036
This paper is concerned with the study of multiplicity of solutions for perturbed impulsive Hamiltonian boundary value problems of the form
$\begin{cases}-\ddot{u}+A(t)u=\lambda \nabla F(t,u)+\mu \nabla G(t,u), \quad &\text{a.e.}\quad t\in [0,T]\\ \Delta(\dot{u}^i(t_j))=\dot{u}^i(t_j^+)-\dot{u}^i(t_j^-)=I_{ij}(u^i(t_j)), & i=1,2,\dots, N, \;j=1,2,\dots, l,\\ u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0,\end{cases}$ where $$A: [0,T]\to {\mathbb R}^{N\times N}$$ is a continuous map from the interval $$[0,T]$$ to the set of $$N$$-order symmetric matrices, $$\lambda, \mu \in {\mathbb R}$$, $$T$$ is a real positive number, $$u(t) = (u^1(t), u^2(t),\dots , u^N (t))$$, $$t_j, j = 1, 2, \dots , l$$, are the instants where the impulses occur and $$0 = t_0 < t_1 < t_2 <\dots < t_l < t_{l+1} = T$$, $$I_{ij} : {\mathbb R}\to {\mathbb R}$$ $$(i = 1,2\dots ,N,$$ $$j = 1,2,\dots,l$$) are continuous and $$F, G:[0,T]\times {\mathbb R}^N\to {\mathbb R}$$ are measurable with respect to $$t,$$ for every $$u\in {\mathbb R}^N$$, continuously differentiable in $$u,$$ for almost every $$t\in [0, T ]$$ and satisfy the following standard summability condition:
$\sup_{ |u|\leq b} (\max{|F (\cdot, u)|, |G(\cdot, u)|, |\nabla F (\cdot, u)|, |\nabla G(\cdot, u)|})\in L^1 ([0, T ])$ for all $$b > 0$$. A variational method and some critical points theorems are used. Examples illustrating the main results are also presented.

##### MSC:
 34B37 Boundary value problems with impulses for ordinary differential equations 37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010) 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces 58E30 Variational principles in infinite-dimensional spaces
Full Text:
##### References:
  Mawhin, J.; Willem, M., Critical point theory and Hamiltonian systems, (1989), Springer · Zbl 0676.58017  Long, Y., Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials, Nonlinear anal. TMA, 25, 1665-1671, (1995) · Zbl 0824.34042  Tang, C., Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. amer. math. soc., 126, 3263-3270, (1998) · Zbl 0902.34036  Bonanno, G.; Livrea, R., Periodic solutions for a class of second-order Hamiltonian systems, Electron. J. differential equations, 115, 1-13, (2005) · Zbl 1096.34027  Bonanno, G.; Livrea, R., Multiple periodic solutions for Hamiltonian systems with not coercive potential, J. math. anal. appl., 363, 627-638, (2010) · Zbl 1192.37084  Cordaro, G.; Rao, G., Three periodic solutions for perturbed second order Hamiltonian systems, J. math. anal. appl., 359, 780-785, (2009) · Zbl 1185.34048  Li, W.; Chang, Y.; Nieto, J.J., Solvability of impulsive neutral evolution differential inclusions with state-dependent delay, Math. comput. modelling, 49, 1920-1927, (2009) · Zbl 1171.34304  Li, J.; Nieto, J.J., Existence of positive solutions for multipoint boundary value problem on the half-line with impulses, Bound. value probl., 2009, (2009), 12 pages, Article ID 834158 · Zbl 1177.34041  Chu, J.; Nieto, J.J., Impulsive periodic solution of first-order singular differential equations, Bull. lond. math. soc., 40, 143-150, (2008) · Zbl 1144.34016  Ahmad, B.; Nieto, J.J., Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions, Nonlinear anal. TMA, 69, 3291-3298, (2008) · Zbl 1158.34049  Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S., Theory of impulsive differential equations, (1989), World Scientific Singapore · Zbl 0719.34002  Samoilenko, A.M.; Perestyuk, N.A., Impulsive differential equations, (1995), World Scientific Singapore · Zbl 0837.34003  Yan, J.; Zhao, A.; Nieto, J.J., Existence and global attractivity of positive periodic solution of periodic single-species impulsive lotka – volterra systems, Math. comput. modelling, 40, 509-518, (2004) · Zbl 1112.34052  Li, J.; Nieto, J.J.; Shen, J., Impulsive periodic boundary value problems of first-order differential equations, J. math. anal. appl., 325, 226-299, (2007) · Zbl 1110.34019  Nieto, J.J.; Rodriguez-Lopez, R., New comparison results for impulsive integro-differential equations and applications, J. math. anal. appl., 328, 1343-1368, (2007) · Zbl 1113.45007  Benchohra, M.; Henderson, J.; Ntouyas, S.K., Impulsive differential equations and inclusions, vol. 2, (2006), Hindawi Publishing Corporation New York · Zbl 1130.34003  Zavalishchin, S.T.; Sesekin, A.N., ()  Zeng, G.; Wang, F.; Nieto, J.J., Complexity of a delayed predator – prey model with impulsive harvest and Holling-type II functional response, Adv. complex syst., 11, 77-97, (2008) · Zbl 1168.34052  Zhang, H.; Chen, L.; Nieto, J.J., A delayed epidemic model with stage structure and pulses for management strategy, Nonlinear anal. RWA, 9, 1714-1726, (2008) · Zbl 1154.34394  Nieto, J.J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear anal. RWA, 10, 680-690, (2009) · Zbl 1167.34318  Tian, Y.; Ge, W., Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. edinb. math. soc., 51, 509-527, (2008) · Zbl 1163.34015  Sun, J.; Chen, H., Variational method to the impulsive equation with Neumann boundary conditions, Bound. value probl., 2009, (2009), 17 pages, Article ID 316812 · Zbl 1184.34039  Zhang, L.; Ge, W., Solvability of a kind of sturm – liouville boundary value problems with impulses via variational methods, Acta appl. math., (2009)  Zhou, J.; Li, Y., Existence of solutions for a class of second order Hamiltonian systems with impulsive effects, Nonlinear anal. TMA, 72, 1594-1603, (2010) · Zbl 1193.34057  Ricceri, B., A further three critical points theorem, Nonlinear anal. TMA, 71, 4151-4157, (2009) · Zbl 1187.47057  Ricceri, B., A three critical points theorem revisited, Nonlinear anal. TMA, 70, 3084-3089, (2009) · Zbl 1214.47079  Ricceri, B., Existence of three solutions for a class of elliptic eigenvalue problem, Math. comput. modelling, 32, 1485-1494, (2000) · Zbl 0970.35089  Zeidler, E., Nonlinear functional analysis and its applications, vol. 2, (1990), Springer Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.