zbMATH — the first resource for mathematics

Nonlinear stability of periodic traveling wave solutions of systems of viscous conservation laws in the generic case. (English) Zbl 1198.35027
Summary: Extending previous results of M. Oh and K. Zumbrun [Arch. Ration. Mech. Anal. 196, No. 1, 1–23 (2010; Zbl 1197.35075)] and Johnson and Zumbrun, we show that spectral stability implies linearized and nonlinear stability of spatially periodic traveling wave solutions of viscous systems of conservation laws for systems of generic type, removing a restrictive assumption that wave speed be constant to first order along the manifold of nearby periodic solutions. Key to our analysis is a nonlinear cancellation estimate observed by Johnson and Zumbrun, along with a detailed understanding of the Whitham averaged system. The latter motivates a careful analysis of the Bloch perturbation expansion near zero frequency and suggests factoring out an appropriate translational modulation of the underlying wave, allowing us to derive the sharpened low-frequency estimates needed to close the nonlinear iteration arguments.

35B35 Stability in context of PDEs
35C07 Traveling wave solutions
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35L65 Hyperbolic conservation laws
35L45 Initial value problems for first-order hyperbolic systems
Full Text: DOI arXiv
[1] Azevedo, A.; Marchesin, D.; Plohr, B.; Zumbrun, K., Bifurcation from the constant state of nonclassical viscous shock waves, Comm. math. phys., 202, 267-290, (1999) · Zbl 0954.35111
[2] B. Barker, J. Humpherys, K. Zumbrun, One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics, preprint, 2007 · Zbl 1402.76051
[3] B. Barker, O. Lafitte, K. Zumbrun, Existence and stability of viscous shock profiles for 2-D isentropic MHD with infinite electrical resistivity, preprint, 2009 · Zbl 1240.35033
[4] Gardner, R., On the structure of the spectra of periodic traveling waves, J. math. pures appl., 72, 415-439, (1993) · Zbl 0831.35077
[5] Gardner, R.; Zumbrun, K., The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. pure appl. math., 51, 7, 797-855, (1998)
[6] Guès, O.; Métivier, G.; Williams, M.; Zumbrun, K., Existence and stability of multidimensional shock fronts in the vanishing viscosity limit, Arch. ration. mech. anal., 175, 151-244, (2004) · Zbl 1072.35122
[7] Gues, O.; Métivier, G.; Williams, M.; Zumbrun, K., Navier – stokes regularization of multidimensional Euler shocks, Ann. sci. école norm. sup. (4), 39, 1, 75-175, (2006) · Zbl 1173.35082
[8] Henry, D., Geometric theory of semilinear parabolic equations, Lecture notes in math., (1981), Springer-Verlag Berlin · Zbl 0456.35001
[9] Hoff, D.; Zumbrun, K., Asymptotic behavior of multidimensional scalar viscous shock fronts, Indiana univ. math. J., 49, 2, (2000) · Zbl 0967.76049
[10] Humpherys, J.; Lafitte, O.; Zumbrun, K., Stability of isentropic navier – stokes shocks in the high-Mach number limit, Comm. math. phys., 293, 1, 1-36, (2010) · Zbl 1195.35244
[11] J. Humpherys, G. Lyng, K. Zumbrun, Multidimensional spectral stability of large-amplitude Navier-Stokes shocks, in preparation · Zbl 1386.35326
[12] Humpherys, J.; Lyng, G.; Zumbrun, K., Spectral stability of ideal-gas shock layers, Arch. ration. mech. anal., 194, 3, 1029-1079, (2009) · Zbl 1422.76122
[13] M. Johnson, K. Zumbrun, Nonlinear stability and asymptotic behavior of periodic traveling waves of multidimensional viscous conservation laws in dimensions one and two, preprint, 2009
[14] Johnson, M.; Zumbrun, K., Rigorous justification of the Whitham modulation equations for the generalized korteweg – de Vries equation, Stud. appl. math., (2010) · Zbl 1196.35184
[15] M. Johnson, K. Zumbrun, J.C. Bronski, On the modulation equations and stability of periodic GKdV waves via Bloch decompositions, preprint, 2010 · Zbl 1211.37087
[16] Kato, T., Perturbation theory for linear operators, (1985), Springer-Verlag Berlin, Heidelberg
[17] Mascia, C.; Zumbrun, K., Pointwise Green function bounds for shock profiles of systems with real viscosity, Arch. ration. mech. anal., 169, 3, 177-263, (2003) · Zbl 1035.35074
[18] Mascia, C.; Zumbrun, K., Stability of large-amplitude viscous shock profiles of hyperbolic – parabolic systems, Arch. ration. mech. anal., 172, 1, 93-131, (2004) · Zbl 1058.35160
[19] Mascia, C.; Zumbrun, K., Stability of small-amplitude shock profiles of symmetric hyperbolic – parabolic systems, Comm. pure appl. math., 57, 7, 841-876, (2004) · Zbl 1060.35111
[20] Oh, M.; Zumbrun, K., Low-frequency stability analysis of periodic traveling-wave solutions of viscous conservation laws in several dimensions, J. anal. appl., 25, 1-21, (2006) · Zbl 1099.35014
[21] Oh, M.; Zumbrun, K., Stability and asymptotic behavior of traveling-wave solutions of viscous conservation laws in several dimensions, Arch. ration. mech. anal., 196, 1-20, (2010) · Zbl 1197.35075
[22] Oh, M.; Zumbrun, K., Stability of periodic solutions of viscous conservation laws with viscosity, 1. analysis of the Evans function, Arch. ration. mech. anal., 166, 2, 99-166, (2003) · Zbl 1074.35006
[23] Oh, M.; Zumbrun, K., Stability of periodic solutions of viscous conservation laws with viscosity. pointwise bounds on the Green function, Arch. ration. mech. anal., 166, 2, 167-196, (2003) · Zbl 1031.35022
[24] Pazy, A., Semigroups of linear operators and applications to partial differential equations, Appl. math. sci., ISBN: 0-387-90845-5, vol. 44, (1983), Springer-Verlag New York, Berlin, viii+279 pp · Zbl 0516.47023
[25] Schneider, G., Diffusive stability of spatial periodic solutions of the swift – hohenberg equation, Comm. math. phys., 178, 3, 679-702, (1996), (in English, English summary) · Zbl 0861.35107
[26] Schneider, G., Nonlinear diffusive stability of spatially periodic solutions – abstract theorem and higher space dimensions, (), 159-167 · Zbl 0907.35015
[27] Schneider, G., Nonlinear stability of Taylor vortices in infinite cylinders, Arch. ration. mech. anal., 144, 2, 121-200, (1998) · Zbl 0916.76022
[28] Serre, D., Spectral stability of periodic solutions of viscous conservation laws: large wavelength analysis, Comm. partial differential equations, 30, 1-3, 259-282, (2005) · Zbl 1131.35046
[29] Zumbrun, K., Dynamical stability of phase transitions in the p-system with viscosity – capillarity, SIAM J. appl. math., 60, 1913-1929, (2000) · Zbl 0973.35183
[30] K. Zumbrun, Instantaneous shock location and one-dimensional nonlinear stability of viscous shock waves, Quart. Appl. Math., in press · Zbl 1221.35059
[31] Zumbrun, K., Planar stability criteria for viscous shock waves of systems with real viscosity, (), 229-326 · Zbl 1138.35061
[32] Zumbrun, K., Stability of large-amplitude shock waves of compressible navier – stokes equations, (), 311-533, with an appendix by Helge Kristian Jenssen and Gregory Lyng · Zbl 1222.35156
[33] Zumbrun, K.; Howard, P., Pointwise semigroup methods and stability of viscous shock waves, Indiana univ. math. J., Indiana univ. math. J., 51, 4, 1017-1021, (2002), Errata:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.