×

zbMATH — the first resource for mathematics

Numerical solution of fuzzy differential equations by Nyström method. (English) Zbl 1198.65113
Summary: Some numerical procedures for solving fuzzy first-order initial value problem have been investigated. Sufficiently conditions for stability and convergence of the proposed algorithms are given and their applicability is illustrated with examples.
Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
65L05 Numerical methods for initial value problems involving ordinary differential equations
26E50 Fuzzy real analysis
34A07 Fuzzy ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abbod, M.F.; von Keyserlingk, D.G.; Linkens, D.A.; Mahfouf, M., Survey of utilisation of fuzzy technology in medicine and healthcare, Fuzzy set syst, 120, 331-349, (2001)
[2] Allahviranloo, T.; Ahmadi, N.; Ahmadi, E., Numerical solution of fuzzy differential equations by predictor – corrector method, Inform sci, 177, 1633-1647, (2007) · Zbl 1183.65090
[3] Aubin, J.P., Fuzzy differential inclusions, Prob control inform theory, 19, 55-57, (1990) · Zbl 0718.93039
[4] Aubin, J.P., A survey of viability theory, SIAM J control optim, 28, 749-788, (1990) · Zbl 0714.49021
[5] Baidosov, V.A., Fuzzy differential inclusions, Prikl math mekh, USSR, 54, 8-13, (1990) · Zbl 0739.93050
[6] Bandyopadhyay, S., An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection, Fuzzy set syst, 152, 5-16, (2005) · Zbl 1062.92026
[7] Barro, S.; Marn, R., Fuzzy logic in medicine, (2002), Physica-Verlag Heidelberg
[8] Byung Soo Moon, A tuning algorithm for the fuzzy logic controllers. EUFIT’95; p. 620-4.
[9] Caldas, M.; Jafari, M., \(\theta\)-compact fuzzy topological spaces, Chaos, solitons & fractals, 25, 229-232, (2005) · Zbl 1070.54501
[10] Casasnovas, J.; Rossell, F., Averaging fuzzy biopolymers, Fuzzy set syst, 152, 139-158, (2005) · Zbl 1060.92032
[11] Chang, B.C.; Halgamuge, S.K., Protein motif extraction with neuro-fuzzy optimization, Bioinformatics, 18, 1084-1090, (2002)
[12] Colombo, G.; Krivan, V., Fuzzy differential inclusions and non-probabilistic likelihood, Dyn-syst appl, 1, (1992)
[13] Datta, D.P., The Golden Mean, scale free extension of real number system, fuzzy sets and 1/f spectrum in physics and biology, Chaos, solitons & fractals, 17, 781-788, (2003) · Zbl 1032.26502
[14] Dembl, D.; Kastner, P., Fuzzy C-means method for clustering microarray data, Bioinformatics, 19, 973-980, (2003)
[15] Feng, G.; Chen, G., Adaptative control of discrete-time chaotic systems: a fuzzy control approach, Chaos, solitons & fractals, 23, 459-467, (2005) · Zbl 1061.93501
[16] Friedman, M.; Ma, M.; Kandel, A., Numerical solution of fuzzy differential and integral equations, Fuzzy set syst, 106, 35-48, (1999) · Zbl 0931.65076
[17] Guo, M.; Xue, X.; Li, R., Impulsive functional differential inclusions and fuzzy population models, Fuzzy set syst, 138, 601-615, (2003) · Zbl 1084.34072
[18] Heger, A.; Holm, L., Sensitive pattern discovery with fuzzy alignments of distantly related proteins, Bioinformatics, 19, 130-137, (2003)
[19] Helgason, C.M.; Jobe, T.H., The fuzzy cube and causal efficacy: representation of concomitant mechanisms in stroke, Neural networks, 11, 549-555, (1998)
[20] Henrici, P., Discrete variable methods in ordinary differential equations, (1962), John Wiley & Sons · Zbl 0112.34901
[21] Isaacson, E.; Keller, H.B., Analysis of numerical methods, (1966), Wiley New York · Zbl 0168.13101
[22] Jiang, W.; Guo-Dong, Q.; Bin, D., \(H_\infty\) variable universe adaptative fuzzy control for chaotic systems, Chaos, solitons & fractals, 24, 1075-1086, (2005) · Zbl 1083.93013
[23] Kaleva, O., Fuzzy differential inclusions, Fuzzy set syst, 24, 301-317, (1987) · Zbl 0646.34019
[24] Kaleva, O., The Cauchy problem for fuzzy differential equations, Fuzzy set syst, 35, 389-396, (1990) · Zbl 0696.34005
[25] Kaleva, O., Interpolation of fuzzy data, Fuzzy set syst, 60, 63-70, (1994) · Zbl 0827.65007
[26] Kandel A, Byatt WJ. Fuzzy differential equations. In: Proceedings of International Conference Cybernetics and Society, Tokyo; p. 1213-16.
[27] Kandel, A.; Byatt, W.J.; sets, Fuzzy, Fuzzy algebra and fuzzy statistics, Proc IEEE, 66, 1619-1639, (1978)
[28] Kandel, A.; Byatt, W.J., Fuzzy processes, Fuzzy set syst, 4, 117-152, (1980) · Zbl 0437.60002
[29] Kandel, A., Fuzzy dynamical systems and the nature of their solutions, (), 93-122
[30] Kirkiakidis K, Tzez A. Fuzzy logic adaptive sliding control design with an application to air-handling systems. EUFIT’95; p. 954-9.
[31] Kloeden, P., Remarks on Peano-like theorems for fuzzy differential equations, Fuzzy set syst, 44, 161-164, (1991) · Zbl 0742.34058
[32] Leland, R.P., Fuzzy differential systems and Malliavin calculus, Fuzzy set syst, 70, 59-73, (1995) · Zbl 0845.34029
[33] Ma, M.; Friedman, M.; Kandel, A., Numerical solution of fuzzy differential equations, Fuzzy set syst, 105, 133-138, (1999) · Zbl 0939.65086
[34] El Naschie, M.S., A review of E-infinite theory and the mass spectrum of high energy particle physics, Chaos, solitons & fractals, 19, 209-236, (2004) · Zbl 1071.81501
[35] El Naschie, M.S., The concepts of E-infinite: an elementary introduction to the Cantorian-fractal theory of quantum physics, Chaos, solitons & fractals, 22, 495-511, (2004) · Zbl 1063.81582
[36] El Naschie, M.S., On a fuzzy khler manifold which is consistent with the two slit experiment, Int J nonlinear sci numer simult, 6, 95-98, (2005)
[37] El Naschie, M.S., From experimental quantum optics to quantum gravity via a fuzzy khler manifold, Chaos, solitons & fractals, 25, 969-977, (2005) · Zbl 1070.81118
[38] Nieto, J.J.; Torres, A., Midpoints for fuzzy sets and their application in medicine, Artif intell med, 27, 81-101, (2003)
[39] Nieto, J.J.; Torres, A.; Georgiou, D.N.; Karakasidis, T.E., Fuzzy polynucleotide spaces and metrics, Bull math biol, 68, 703-725, (2006) · Zbl 1334.92275
[40] He, Ouang; Yi, Wu, On fuzzy differential equations, Fuzzy set syst, 32, 321-325, (1989) · Zbl 0719.54007
[41] Park, J.H., Intuitionistic fuzzy metric spaces, Chaos, solitons & fractals, 22, 1039-1046, (2004) · Zbl 1060.54010
[42] Seikkala, S., On the fuzzy initial value problem, Fuzzy set syst, 24, 319-330, (1987) · Zbl 0643.34005
[43] Song, S.; Wu, C., Existence and uniquess of solution to the Cauchy problem of fuzzy differential equations, Fuzzy set syst, 110, 55-57, (2000)
[44] Stefanini, L.; Sorini, L.; Guerra, M.L., Parametric representation of fuzzy numbers and application to fuzzy calculus, Fuzzy set syst, 157, 2423-2455, (2006) · Zbl 1109.26024
[45] Tanaka, Y.; Mizuno, Y.; Kado, T., Chaotic dynamics in the Friedman equation, Chaos, solitons & fractals, 24, 407-422, (2005) · Zbl 1070.83535
[46] Wu, C.; Song, S.; Stanley Lee, E., Approximate solution, existence and uniqueness of the Cauchy problem of fuzzy differential equations, J math anal appl, 202, 629-644, (1996) · Zbl 0861.34040
[47] Menda, Wu, Linear fuzzy differential equation system on \(R^1\), J fuzzy syst math, 2, 1, 51-56, (1988), [in Chinese]
[48] Zhang, H.; Liao, X.; Yu, J., Fuzzy modeling and synchronization of hyperchaotic systems, Chaos, solitons & fractals, 26, 835-843, (2005) · Zbl 1093.93540
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.