×

zbMATH — the first resource for mathematics

Solving the fractional BBM-Burgers equation using the homotopy analysis method. (English) Zbl 1198.65205
Summary: Based on the homotopy analysis method, a scheme is developed to obtain approximation solution of a fractional BBM-Burgers equation with initial condition, which is introduced by replacing some integer-order space derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the traditional homotopy analysis method for differential equations of integer-order is directly extended to derive explicit and numerical solutions of the fractional differential equations. The solutions of our model equation are calculated in the form of convergent series with easily computable components.
Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Q53 KdV equations (Korteweg-de Vries equations)
45K05 Integro-partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press New York · Zbl 0762.35001
[2] Wadat, M., J phys soc jpn, 32, 1681, (1972)
[3] Wadat, M., J phys soc jpn, 34, 1280, (1972)
[4] Wadat, M.; Sanuki, H.; Konno, K., Prog theor phys, 53, 419, (1975)
[5] Wadati, M., J phys soc jpn, 38, 673, (1975)
[6] Wadati, M., J phys soc jpn, 38, 681, (1975)
[7] Matveev, V.B.; Salle, M.A., Darbooux transformation and soliton, (1991), Springer Berlin · Zbl 0744.35045
[8] Hirota, R., The direct method in soliton theory, (2004), Cambridge University Press New York
[9] Conte, R.; Musette, M., J phys A: math gen, 22, 169, (1989)
[10] Clarkson, P.A.; Kruskal, M.D., J math phys, 30, 2201, (1989)
[11] Lou, S.Y.; Chen, C.L.; Tang, X.Y., J math phys, 43, 4078, (2002)
[12] Liu, S.K.; Fu, Z.T.; Liu, S.D.; Zhao, Q., Phys lett A, 289, 69, (2001)
[13] He, J.H.; Wu, X.H., Chaos solitons & fractals, 30, 700, (2006)
[14] Fan, E.G.; Chao, L., Phys lett A, 285, 373, (2001)
[15] Yan, Z.Y., Phys lett A, 285, 355, (2001)
[16] Lü, Z.S., Chaos solitons & fractals, 17, 669, (2003)
[17] Li, B.; Chen, Y.; Zhang, H.Q., Chaos solitons & fractals, 15, 647, (2003)
[18] Chen, Y.; Zheng, X.D.; Li, B.; Zhang, H.Q., Appl math comput, 149, 277, (2004)
[19] Xie, F.D.; Zhang, Y.; Lü, Z.S., Chaos solitons & fractals, 24, 257, (2005)
[20] Wang, Q.; Chen, Y., Chaos solitons & fractals, 30, 197, (2006)
[21] Song, L.N.; Zhang, H.Q., Appl math comput, 180, 664, (2006)
[22] Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis. Shanghai Jiao Tong University; 1992.
[23] Liao, S.J., Int J non-linear mech, 34, 759, (1999)
[24] Liao, S.J., Beyond perturbation: introduction to the homotopy analysis method, (2003), Chapman & Hall/CRC Press Boca Raton
[25] Liao, S.J., J fluid mech, 488, 189, (2003)
[26] Liao, S.J., Appl math comput, 147, 499, (2004)
[27] Liao, S.J., Int J heat mass transfer, 48, 2529, (2005)
[28] Liao, S.J., Appl math comput, 169, 1186, (2005)
[29] Liao, S.J.; Su, J.; Chwang, A.T., Int J heat mass transfer, 49, 2437, (2006)
[30] Liao, S.J.; Magyari, E., Z angew math phys, 57, 777, (2006)
[31] Liao, S.J., Stud appl math, 117, 239, (2006)
[32] Abbasbandy, S., Phys lett A, 360, 109, (2006)
[33] Zhu, S.P., Anziam j, 47, 477, (2006)
[34] Abbasbandy, S., Phys lett A, 361, 478, (2007) · Zbl 1273.65156
[35] West, B.J.; Bolognab, M.; Grigolini, P., Physics of fractal operators, (2003), Springer New York
[36] Miller, K.S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), Wiley New York · Zbl 0789.26002
[37] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Yverdon · Zbl 0818.26003
[38] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[39] Caputo, M., J roy astr soc, 13, 529, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.