×

Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by hyperbolic Lindstedt-Poincaré method. (English) Zbl 1200.37016

A strongly cubic nonlinear oscillator is studied. Homoclinic and heteroclinic solutions of such an oscillator are found by menas of the hyperbolic Lindstedt-Poincaré method. Several numerical simulations illustrate the theoretical results obtained in the paper.

MSC:

37C29 Homoclinic and heteroclinic orbits for dynamical systems
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
37M05 Simulation of dynamical systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chen S H, Chen Y Y, Sze K Y. A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators. J Sound Vib, 2009, 322: 381–392
[2] Vakakis A F. Exponentially small splittings of manifolds in a rapidly forced Duffing system, Letter to the editor. J Sound Vib, 1994, 170: 119–129 · Zbl 0925.70262
[3] Vakakis A F, Azeez M F A. Analytic approximation of the homoclinic orbits of the Lorenz system at {\(\sigma\)} = 10, b = 8/3 and {\(\rho\)} = 13.926.... Nonlinear Dyn, 1998, 15: 245–257 · Zbl 0910.34053
[4] Xu Z, Chan H S Y, Chung K W. Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method. Nonlinear Dyn, 1996, 11: 213–233
[5] Chan H S Y, Chung K W, Xu Z. Stability and bifurcations of limit cycles by the perturbation-incremental method. J Sound Vib, 1997, 206: 589–604 · Zbl 1235.34093
[6] Belhaq M. Predicting homoclinic bifurcations in planar autonomous systems. Nonlinear Dyn, 1999, 18: 303–310 · Zbl 0943.34026
[7] Belhaq M, Lakrad F. Prediction of homoclinic bifurcation: the elliptic averaging method. Chaos Solitons & Fractals 2000, 11: 2251–2258 · Zbl 0953.34026
[8] Belhaq M, Fiedler B, Lakrad F. Homoclinic connections in strongly self-excited nonlinear oscillators: the Melnikov function and the elliptic Lindstedt-Poincaré method. Nonlinear Dyn, 2000, 23: 67–86 · Zbl 0967.70019
[9] Mikhlin Yu V. Analytical construction of homoclinic orbits of two- and three-dimensional dynamical systems, J Sound Vib, 2000, 230: 971–983 · Zbl 1235.34140
[10] Mikhlin Yu V, Manucharyan G V. Construction of homoclinic and heteroclinic trajectories in mechanical systems with several equilibrium positions. Chaos Solitons & Fractals, 2003, 16: 299–309 · Zbl 1056.70011
[11] Zhang Y M, Lu Q S. Homoclinic bifurcation of strongly nonlinear oscillators by frequency-incremental method. Comm Nonlinear Sci Num Simul, 2003, 8: 1–7 · Zbl 1027.34053
[12] Zhang Q, Wang W, Li W. Heteroclinic bifurcations of strongly nonlinear oscillator. Chinese Phys Lett, 2008, 25: 1905–1907
[13] Chen Y Y, Chen S H. Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method. Nonlinear Dyn, 2009, 58: 417–429 · Zbl 1183.70045
[14] Izydorek M, Janczewska J. Homoclinic solutions for a class of the second order Hamiltonian systems. J Differential Eq, 2005, 219: 375–389 · Zbl 1080.37067
[15] Izydorek M, Janczewska J. Heteroclinic solutions for a class of the second order Hamiltioinian systems. J Diff Eq, 2007, 238: 381–393 · Zbl 1117.37033
[16] Wang K, Li Y. A note on existence of (anti-)periodic and heteroclinic solutions for a class of second-order odes. Nonlinear Anal, 2009, 70: 1711–1724 · Zbl 1167.34012
[17] Zhang Z, Yuan R. Homoclinic solutions for a class of non-autono-mous subquadratic second-order Hamiltonian systems. Nonlinear Anal, 2009, 71: 4125–4130 · Zbl 1173.34330
[18] Tang X H, Li X. Homoclinic solutions for a class of second-order Hamiltonian systems. Nonlinear Anal, 2009, 71: 1140–1152 · Zbl 1185.34056
[19] Chen Y Y, Chen S H, Sze K Y. A hyperbolic Lindstedt-Poincaré method for homoclinic motion of a kind of strongly nonlinear oscillators. Acta Mech Sin, 2009, 25: 721–729 · Zbl 1269.70031
[20] Nayfeh A H. Introduction to Perturbation Techniques. New York: Wiley, 1981 · Zbl 0449.34001
[21] Merkin J H, Needham D J. On infinite period bifurcations with an application to roll waves. Acta Mech, 1986, 60: 1–16 · Zbl 0588.76024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.