On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems. (English) Zbl 1200.39001

The authors consider the nonlinear discrete periodic system \[ a_nu_{n+1}+a_{n-1}u_{n-1}+b_nu_n-\omega u_n=\sigma f_n(u_n),\quad n\in\mathbb{Z}, \]
where \(f_n(u)\) is continuous in \(u\) and with saturable nonlinearity for each \(n\in\mathbb{Z}\), \(f_{n+T}(u)=f_n(u)\), \(\{a_n\},\{b_n\}\) are real valued \(T\)-periodic sequences. They are interested in the existence of nontrivial homoclinic solutions for this equation; this problem appears when one looks for the discrete solitons of the periodic discrete nonlinear Schrödinger equations. A new sufficient condition guaranteeing the existence of homoclinic solutions is obtained by using critical point theory. It is proved that it is also necessary in some special cases. Moreover, the rate of decay is established.
Reviewer: Pavel Rehak (Brno)


39A12 Discrete version of topics in analysis
39A70 Difference operators
39A23 Periodic solutions of difference equations
37C29 Homoclinic and heteroclinic orbits for dynamical systems
Full Text: DOI


[1] Arioli, G.; Gazzola, F., Periodic motions of an infinite lattice of particles with nearest neighbor interaction, Nonlinear anal., 26, 1103-1114, (1996) · Zbl 0867.70004
[2] Aubry, S., Breathers in nonlinear lattices: existence, linear stability and quantization, Physica D, 103, 201-250, (1997) · Zbl 1194.34059
[3] Aubry, S., Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems, Physica D, 216, 1-30, (2006) · Zbl 1159.82312
[4] Aubry, S.; Kopidakis, G.; Kadelburg, V., Variational proof for hard discrete breathers in some classes of Hamiltonian dynamical systems, Discrete contin. dyn. syst. ser. B, 1, 271-298, (2001) · Zbl 1092.37523
[5] Christodoulides, D.N.; Lederer, F.; Silberberg, Y., Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature, 424, 817-823, (2003)
[6] Cuevas, J.; Kevrekidis, P.G.; Frantzeskakis, D.J.; Malomed, B.A., Discrete solitons in nonlinear Schrödinger lattices with a power-law nonlinearity, Physica D, 238, 67-76, (2009) · Zbl 1153.82321
[7] Efremidis, N.K.; Sears, S.; Christodoulides, D.N.; Fleischer, J.W.; Segev, M., Discrete solitons in photorefractive optically induced photonic lattices, Phys. rev. E, 66, 046602, (2002)
[8] Flach, S.; Gorbach, A.V., Discrete breathers — advance in theory and applications, Phys. rep., 467, 1-116, (2008)
[9] Flach, S.; Willis, C.R., Discrete breathers, Phys. rep., 295, 181-264, (1998)
[10] Fleischer, J.W.; Carmon, T.; Segev, M.; Efremidis, N.K.; Christodoulides, D.N., Observation of discrete solitons in optically induced real time waveguide arrays, Phys. rev. lett., 90, 023902, (2003)
[11] Fleischer, J.W.; Segev, M.; Efremidis, N.K.; Christodoulides, D.N., Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422, 147-150, (2003)
[12] Gatz, S.; Herrmann, J., Soliton propagation in materials with saturable nonlinearity, J. opt. soc. amer. B, 8, 2296-2302, (1991)
[13] Gatz, S.; Herrmann, J., Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change, Opt. lett., 17, 484-486, (1992)
[14] Gorbach, A.V.; Johansson, M., Gap and out-gap breathers in a binary modulated discrete nonlinear Schrödinger model, Eur. phys. J. D, 29, 77-93, (2004)
[15] James, G., Centre manifold reduction for quasilinear discrete systems, J. nonlinear sci., 13, 27-63, (2003) · Zbl 1185.37158
[16] Livi, R.; Franzosi, R.; Oppo, G.-L., Self-localization of bose – einstein condensates in optical lattices via boundary dissipation, Phys. rev. lett., 97, 060401, (2006)
[17] MacKay, R.S.; Aubry, S., Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity, 7, 1623-1643, (1994) · Zbl 0811.70017
[18] Mawhin, J.; Willem, M., Critical point theory and Hamiltonian systems, (1989), Springer-Verlag Inc. New York · Zbl 0676.58017
[19] Pankov, A., Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19, 27-40, (2006) · Zbl 1220.35163
[20] Pankov, A., Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach, Discrete contin. dyn. syst., 19, 419-430, (2007) · Zbl 1220.35164
[21] Pankov, A.; Rothos, V., Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. soc. A, 464, 3219-3236, (2008) · Zbl 1186.35206
[22] Rabinowitz, P.H., Minimax methods in critical point theory with applications to differential equations, CBMS reg. conf. ser. math., vol. 65, (1986), American Mathematical Society Providence, RI · Zbl 0609.58002
[23] Shi, H.; Zhang, H., Existence of gap solitons in periodic discrete nonlinear Schrödinger equations, J. math. anal. appl., 361, 411-419, (2010) · Zbl 1178.35351
[24] Sukhorukov, A.A.; Kivshar, Y.S., Generation and stability of discrete gap solitons, Opt. lett., 28, 2345-2347, (2003)
[25] Teschl, G., Jacobi operators and completely integrable nonlinear lattices, Math. surveys monogr., vol. 72, (2000), American Mathematical Society Providence, RI · Zbl 1056.39029
[26] Yan, Z., Envelope solution profiles of the discrete nonlinear Schrödinger equation with a saturable nonlinearity, Appl. math. lett., 22, 448-452, (2009) · Zbl 1170.35540
[27] Yu, J.; Guo, Z., On boundary value problems for a discrete generalized emden – fowler equation, J. differential equations, 231, 18-31, (2006) · Zbl 1112.39011
[28] Zhou, Z.; Yu, J.; Guo, Z., Periodic solutions of higher-dimensional discrete systems, Proc. roy. soc. Edinburgh sect. A, 134, 1013-1022, (2004) · Zbl 1073.39010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.