zbMATH — the first resource for mathematics

Semiclassical loop quantum black hole. (English) Zbl 1200.83003
Summary: We improve the semiclassical analysis of loop quantum black hole (LQBH) in the conservative approach of a constant polymeric parameter. In particular we focus our attention on the space-time structure. We introduce a very simple modification of the spherically symmetric Hamiltonian constraint in terms of holonomies. The new quantum constraint reduces to the classical constraint when the polymeric parameter \(\delta\) goes to zero. Using this modification we obtain a large class of semiclassical solutions parametrized by a generic function \(\sigma (\delta)\). We find that only a particular choice of this function reproduces the Schwarzschild black hole solution outside the black hole with the correct asymptotic flat limit. In \(r=0\) the semiclassical metric is regular and the Kretschmann invariant has a maximum peaked at \(r_{\text{max}} \propto l_{P}\). The radial position of the peak does not depend on the black hole mass and the polymeric parameter \(\delta \). The semiclassical solution is very similar to the Reissner-Nordström metric. We construct the Carter-Penrose diagrams explicitly, giving a causal description of the space-time and its maximal extension. The LQBH metric interpolates between two asymptotically flat regions, the \(r\rightarrow \infty \) region and the \(r\rightarrow 0\) region. We study the thermodynamics of the semiclassical solution. The temperature, entropy and the evaporation process are regular and could be defined independently from the polymeric parameter \(\delta \). We study the particular metric when the polymeric parameter goes towards to zero. This metric is regular in \(r=0\) and has only one event horizon in \(r=2m\). The radial position of the Kretschmann invariant maximum depends only on \(l_{P}\). As such the polymeric parameter \(\delta \) does not play any role in the black hole singularity resolution. The thermodynamics is the same.

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C57 Black holes
83C45 Quantization of the gravitational field
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C22 Einstein-Maxwell equations
Full Text: DOI arXiv
[1] Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004) · Zbl 1091.83001
[2] Ashtekar, A.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53 (2004). gr-qc/0404018 · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[3] Thiemann, T.: Loop quantum gravity: an inside view. hep-th/0608210 · Zbl 1151.83019
[4] Thiemann, T.: Introduction to modern canonical quantum general relativity. gr-qc/0110034
[5] Thiemann, T.: Lectures on loop quantum gravity. Lect. Notes Phys. 631, 41–135 (2003). gr-qc/0210094 · Zbl 1056.83015
[6] Bojowald, M.: Loop quantum cosmology. Living Rev. Relativ. 8, 11 (2005). gr-qc/0601085 · Zbl 1255.83133
[7] Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227–5230 (2001). gr-qc/0102069 · doi:10.1103/PhysRevLett.86.5227
[8] Ashtekar, A., Bojowald, M., Lewandowski, J.: Mathematica structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233–268 (2003). gr-qc/0304074
[9] Ashtekar, A., Pawlowski, T., Singh, P., Vandersloot, K.: Loop quantum cosmology of k=1 FRW models. Phys. Rev. D 75, 024035 (2007). gr-qc/0612104 · Zbl 1197.83048 · doi:10.1103/PhysRevD.75.024035
[10] Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006). gr-qc/0607039 · Zbl 1197.83047 · doi:10.1103/PhysRevD.74.084003
[11] Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: an analytical and numerical investigation. I. Phys. Rev. D 73, 124038 (2006). gr-qc/0604013 · Zbl 1197.83047 · doi:10.1103/PhysRevD.73.124038
[12] Kantowski, R., Sachs, R.K.: J. Math. Phys. 7(3), 433 (1966) · doi:10.1063/1.1704952
[13] Bombelli, L., Torrence, R.J.: Perfect fluids and Ashtekar variables with application to Kantowski-Sachs models. Class. Quantum Gravity 7, 1747–1745 (1990) · doi:10.1088/0264-9381/7/10/008
[14] Modesto, L.: Disappearance of the black hole singularity in loop quantum gravity. Phys. Rev. D 70, 124009 (2004). gr-qc/0407097 · doi:10.1103/PhysRevD.70.124009
[15] Modesto, L.: The Kantowski-Sachs space-time in loop quantum gravity. Int. J. Theor. Phys. 45, 2235–2246 (2006). gr-qc/0411032 · Zbl 1130.83311 · doi:10.1007/s10773-006-9188-y
[16] Modesto, L.: Loop quantum gravity and black hole singularity. In: Proceedings of 17th SIGRAV Conference, Turin, Italy, 4–7 Sep 2006. hep-th/0701239 · Zbl 1101.83033
[17] Modesto, L.: Gravitational collapse in loop quantum gravity. Int. J. Theor. Phys. 47, 357–373 (2008). gr-qc/0610074 · Zbl 1140.83354 · doi:10.1007/s10773-007-9458-3
[18] Modesto, L.: Quantum gravitational collapse. gr-qc/0504043 · Zbl 1140.83354
[19] Ashtekar, A., Bojowald, M.: Quantum geometry and Schwarzschild singularity. Class. Quantum Gravity 23, 391–411 (2006). gr-qc/0509075 · Zbl 1090.83021 · doi:10.1088/0264-9381/23/2/008
[20] Modesto, L.: Loop quantum black hole. Class. Quantum Gravity 23, 5587–5602 (2006). gr-qc/0509078 · Zbl 1101.83033 · doi:10.1088/0264-9381/23/18/006
[21] Gambini, R., Pullin, J.: Black holes in loop quantum gravity: the complete space-time. Phys. Rev. Lett. 101, 161301 (2008). arXiv:0805.1187 · Zbl 1151.83325 · doi:10.1103/PhysRevLett.101.161301
[22] Campiglia, M., Gambini, R., Pullin, J.: Loop quantization of spherically symmetric midi-superspaces: the interior problem. AIP Conf. Proc. 977, 52–63 (2008). arXiv:0712.0817 · Zbl 1183.83037 · doi:10.1063/1.2902798
[23] Campiglia, M., Gambini, R., Pullin, J.: Loop quantization of spherically symmetric midi-superspaces. Class. Quantum Gravity 24, 3649–3672 (2007). gr-qc/0703135 · Zbl 1206.83071 · doi:10.1088/0264-9381/24/14/007
[24] Modesto, L.: Black hole interior from loop quantum gravity. gr-qc/0611043
[25] Modesto, L.: Evaporating loop quantum black hole. gr-qc/0612084
[26] Bohmer, C.G., Vandersloot, K.: Loop quantum dynamics of the Schwarzschild interior. arXiv:0709.2129
[27] Chiou, D.W.: Phenomenological loop quantum geometry of the Schwarzschild black hole. arXiv:0807.0665
[28] Rovelli, C., Smolin, L.: Loop space representation of quantum general relativity. Nucl. Phys. B 331, 80 (1990) · doi:10.1016/0550-3213(90)90019-A
[29] Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593 (1995) · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00150-Q
[30] Bianchi, E.: The length operator in loop quantum gravity. Nucl. Phys. B 807, 591–624 (2009). arXiv:0806.4710 · Zbl 1192.83019 · doi:10.1016/j.nuclphysb.2008.08.013
[31] Ashtekar, A.: New Hamiltonian formulation of general relativity. Phys. Rev. D 36, 1587–1602 (1987) · doi:10.1103/PhysRevD.36.1587
[32] Conrady, F., Freidel, L.: Path integral representation of spin foam models of 4d gravity. arXiv:0806.4640 · Zbl 1156.83311
[33] Engle, J., Livine, E., Pereira, R., Rovelli, C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B 799, 136–149 (2008). arXiv:0711.0146 · Zbl 1292.83023 · doi:10.1016/j.nuclphysb.2008.02.018
[34] Engle, J., Pereira, R., Rovelli, C.: Flipped spinfoam vertex and loop gravity. Nucl. Phys. B 798, 251–290 (2008). arXiv:0708.1236 · Zbl 1234.83009 · doi:10.1016/j.nuclphysb.2008.02.002
[35] Engle, J., Pereira, R., Rovelli, C.: The loop-quantum-gravity vertex-amplitude. Phys. Rev. Lett. 99, 161301 (2007). arXiv:0705.2388 · Zbl 1228.83045 · doi:10.1103/PhysRevLett.99.161301
[36] Conrady, F., Freidel, L.: On the semiclassical limit of 4d spin foam models. arXiv:0809.2280 · Zbl 1156.83311
[37] Alesci, E., Rovelli, C.: The complete LQG propagator I. Difficulties with the Barrett-Crane vertex. Phys. Rev. D 76, 104012 (2007). arXiv:0708.0883 · doi:10.1103/PhysRevD.76.104012
[38] Speziale, S.: Background-free propagation in loop quantum gravity. arXiv:0810.1978
[39] Bianchi, E., Modesto, L., Rovelli, C., Speziale, S.: Graviton propagator in loop quantum gravity. Class. Quantum Gravity 23, 6989–7028 (2006). gr-qc/0604044 · Zbl 1117.83042 · doi:10.1088/0264-9381/23/23/024
[40] Modesto, L., Rovelli, C.: Particle scattering in loop quantum gravity. Phys. Rev. Lett. 95, 191301 (2005). gr-qc/0502036 · doi:10.1103/PhysRevLett.95.191301
[41] Bianchi, E., Modesto, L.: The perturbative Regge-calculus regime of loop quantum gravity. Nucl. Phys. B 796, 581–621 (2008). arXiv:0709.2051 · Zbl 1219.83077 · doi:10.1016/j.nuclphysb.2007.12.011
[42] Bianchi, E., Satz, A.: Semiclassical regime of Regge calculus and spin foams. arXiv:0808.1107 · Zbl 1192.83020
[43] Kuchar, K.V.: Geometrodynamics of Schwarzschild black hole. Phys. Rev. D 50, 3961–3981 (1994). gr-qc/9403003 · doi:10.1103/PhysRevD.50.3961
[44] Thiemann, T.: Reduced models for quantum gravity. Lect. Notes Phys. 434, 289–318 (1994). gr-qc/9910010 · doi:10.1007/3-540-58339-4_22
[45] Kastrup, H.A., Thiemann, T.: Spherically symmetric gravity as a completely integrable system. Nucl. Phys. B 425, 665–686 (1994). gr-qc/9401032 · Zbl 1049.83510 · doi:10.1016/0550-3213(94)90293-3
[46] Thiemann, T., Kastrup, H.A.: Canonical quantization of spherically symmetric gravity in Ashtekar’s selfdual representation. Nucl. Phys. B 399, 211–258 (1993). gr-qc/9310012 · doi:10.1016/0550-3213(93)90623-W
[47] Landau, L.D., Lifsits, E.M.: The Classical Theory of Fields. Butterworth/Heinemann, Stoneham/London (1980)
[48] Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: an analytical and numerical investigation. I. Phys. Rev. D 73, 124038 (2006). gr-qc/0604013 · Zbl 1197.83047 · doi:10.1103/PhysRevD.73.124038
[49] Fabbri, A., Navarro-Salas, J.: Modeling Black Hole Evaporation. Imperial College Press, London (2005)
[50] Ashtekar, A., Bojowald, M.: Black hole evaporation: a paradigm. Class. Quantum Gravity 22, 3349–3362 (2005). gr-qc/0504029 · Zbl 1160.83332 · doi:10.1088/0264-9381/22/16/014
[51] Bonanno, A., Reuter, M.: Renormalization group improved black hole space-times. Phys. Rev. D 62, 043008 (2000). hep-th/0002196
[52] Bonanno, A., Reuter, M.: Spacetime structure of an evaporating black hole in quantum gravity. Phys. Rev. D 73, 083005 (2006). hep-th/0602159 · doi:10.1103/PhysRevD.73.083005
[53] Myung, Y.S., Kim, Y.W., Park, Y.-J.: Thermodynamics of regular black hole. arXiv:0708.3145 · Zbl 1177.83090
[54] Myung, Y.S., Kim, Y.W., Park, Y.J.: Quantum cooling evaporation process in regular black holes. Phys. Lett. B 656, 221–225 (2007). gr-qc/0702145 · Zbl 1246.83137 · doi:10.1016/j.physletb.2007.09.056
[55] Nicolini, P.: Noncommutative black holes, the final appeal to quantum gravity: a review. arXiv:0807.1939 · Zbl 1170.83417
[56] Banerjee, R., Majhi, B.R., Samanta, S.: Noncommutative black hole thermodynamics. Phys. Rev. D 77, 124035 (2008). arXiv:0801.3583
[57] Banerjee, R., Majhi, B.R., Modak, S.K.: Area law in noncommutative Schwarzschild black hole. arXiv:0802.2176 · Zbl 1163.83345
[58] Simpson, M., Penrose, R.: Internal instability in Reissner-Nordström black hole. Int. J. Theor. Phys. 7, 183–197 (1973) · doi:10.1007/BF00792069
[59] Oriti, D.: Group field theory as the microscopic description of the quantum spacetime fluid: a new perspective on the continuum in quantum gravity. arXiv:0710.3276
[60] Bombelli, L., Torrence, R.J.: Perfect fluids and Ashtekar variables with application to Kantowski-Sachs models. Class. Quantum Gravity 7, 1747–1745 (1990) · doi:10.1088/0264-9381/7/10/008
[61] Corichi, A., Singh, P.: Is loop quantization in cosmology unique? Phys. Rev. D 78, 024034 (2008). arXiv:0805.0136 · doi:10.1103/PhysRevD.78.024034
[62] Arzano, M.: Black hole entropy, log corrections and quantum ergosphere. Phys. Lett. B 634, 536–540 (2006). gr-qc/0512071 · Zbl 1247.83069 · doi:10.1016/j.physletb.2006.02.020
[63] Arzano, M., Medved, A.J.M., Vagenas, E.C.: Hawking radiation as tunneling through the quantum horizon. J. High Energy Phys. 0509, 037 (2005). hep-th/0505266 · Zbl 1081.83019
[64] Banerjee, R., Majhi, B.R.: Quantum tunneling and back reaction. Phys. Lett. B 662, 62–65 (2008). arXiv:0801.0200 · Zbl 1282.83025 · doi:10.1016/j.physletb.2008.02.044
[65] Banerjee, R., Majhi, B.R.: Quantum tunneling beyond semiclassical approximation. J. High Energy Phys. 0806, 095 (2008). arXiv:0805.2220 · Zbl 1282.83025
[66] Banerjee, R., Majhi, B.R.: Quantum tunneling and trace anomaly. arXiv:0808.3688 · Zbl 1282.83025
[67] Majhi, B.R.: Fermion tunneling beyond semiclassical approximation. arXiv:0809.1508
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.