×

Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. (English) Zbl 1201.35072

Summary: Based on a multidimensional Riemann theta function, a lucid and straightforward generalization of the Hirota-Riemann method is presented to explicitly construct multiperiodic Riemann theta functions periodic wave solutions for nonlinear equations such as the Caudrey-Dodd-Gibbon-Sawada-Kotera equation and \((2+1)\)-dimensional breaking soliton equation. Among these periodic waves, the one-periodic waves are well-known cnoidal waves, their surface pattern is one-dimensional, and often they are used as one-dimensional models of periodic waves. The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional so that they have two independent spatial periods in two independent horizontal directions. A limiting procedure is presented to analyze in detail, asymptotic behavior of the multiperiodic waves and the relations between the periodic wave solutions and soliton solutions are rigorously established. This generalized Hirota-Riemann method can also be demonstrated on a class variety of nonlinear difference equations such as Toeplitz lattice equation.

MSC:

35C07 Traveling wave solutions
35B40 Asymptotic behavior of solutions to PDEs
35B10 Periodic solutions to PDEs
35C08 Soliton solutions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ablowitz, M.J.; Clarkson, P.A., Solitons; nonlinear evolution equations and inverse scattering, (1991), Cambridge Univ. Press · Zbl 0762.35001
[2] Bluman, G.; Kumei, S., Symmetries and differential equations, Grad. texts in math., vol. 81, (1989), Springer-Verlag New York · Zbl 0698.35001
[3] Matveev, V.B.; Salle, M.A., Darboux transformation and solitons, (1991), Springer · Zbl 0744.35045
[4] Hirota, R., Direct methods in soliton theory, (2004), Springer
[5] Belokolos, E.; Bobenko, A.; Enol’skij, V.; Its, A.; Matveev, V., Algebro-geometrical approach to nonlinear integrable equations, (1994), Springer · Zbl 0809.35001
[6] Novikov, S.P., Funct. anal. appl., 8, 236-246, (1974)
[7] Dubrovin, B.A., Funct. anal. appl., 9, 265-273, (1975)
[8] Its, A.; Matveev, V.B., Funct. anal. appl., 9, 65-66, (1975)
[9] Lax, P.D., Comm. pure appl. math., 28, 141-188, (1975)
[10] Mckean, H.P.; Moerbeke, P., Invent. math., 30, 217-274, (1975)
[11] Gesztesy, F.; Holden, H., Soliton equations and their algebro-geometric solutions, (2003), Cambridge Univ. Press · Zbl 1061.37056
[12] Gesztesy, F.; Holden, H., Philos. trans. R. soc. lond. ser. A, 366, 1025, (2008)
[13] Qiao, Z.J., Comm. math. phys., 239, 309-341, (2003)
[14] Zhou, R.G., J. math. phys., 38, 2535-2546, (1997)
[15] Cao, C.W.; Wu, Y.T.; Geng, X.G., J. math. phys., 40, 3948-3970, (1999)
[16] Geng, X.G.; Wu, Y.T.; Cao, C.W., J. phys. A, 32, 3733-3742, (1999)
[17] Geng, X.G.; Cao, C.W., Nonlinearity, 14, 1433-1452, (2001)
[18] Geng, X.G.; Dai, H.H.; Zhu, J.Y.; Wang, H.Y., Stud. appl. math., 118, 281, (2007)
[19] Hon, Y.C.; Fan, E.G., J. math. phys., 46, 032701-032721, (2005)
[20] Nakamura, A., J. phys. soc. Japan, 47, 1701-1705, (1979)
[21] Nakamura, A., J. phys. soc. Japan, 48, 1365-1370, (1980)
[22] Hirota, R.; Satsuma, J., Progr. theoret. phys., 57, 797, (1977)
[23] Hirota, R.; Hu, X.B.; Tang, X.Y., J. math. anal. appl., 288, 326-348, (2003)
[24] Hon, Y.C.; Fan, E.G., Modern phys. lett. B, 22, 547, (2008)
[25] Fan, E.G.; Hon, Y.C., Phys. rev. E, 78, 036607-036619, (2008)
[26] Fan, E.G., J. phys. A math. theor., 42, 095206-095210, (2009)
[27] Ma, W.X.; Zhou, R.G., Modern phys. lett. A, 24, 1677-1688, (2009)
[28] Chow, K.W., Phys. scr., 50, 233-237, (1994)
[29] Chow, K.W., J. math. phys., 36, 4125-4137, (1995)
[30] Chow, K.W., Phys. lett. A, 285, 319-326, (2001) · Zbl 0969.35548
[31] Chow, K.W.; Lam, C.K.; Nakkeeran, K.; Malmed, B., J. phys. soc. Japan, 77, 054001, (2008)
[32] Tian, S.F.; Zhang, T.T.; Zhang, H.Q., Phys. scr., 80, 065013, (2009)
[33] Tian, S.F.; Wang, Z.; Zhang, H.Q.; Tian, S.F.; Zhang, H.Q., J. math. anal. appl., Commun. nonlinear sci. numer. simul., 366, 646-662, (2010)
[34] Hirota, R.; Ohta, Y., J. phys. soc. Japan, 60, 798, (1991)
[35] Hu, X.B.; Li, C.X.; Nimmo, J.J.C.; Yu, G.F., J. phys. A, 38, 195, (2005)
[36] Farkas, H.M.; Kra, I., Riemann surfaces, (1992), Springer-Verlag New York · Zbl 0475.30001
[37] Sawada, K.; Kotera, T., Progr. theoret. phys., 51, 1355, (1974)
[38] Dodd, R.K.; Gibbon, J.D., Proc. R. soc. A, 358, 287, (1977) · Zbl 0376.35009
[39] Aiyer, R.N.; Fuchssteiner, B.; Oevel, W., J. phys. A, 19, 3755-3770, (1986)
[40] Lou, S.Y., Phys. lett. A, 175, 23-26, (1993)
[41] Wazwaz, A.M., Appl. math. comput., 197, 719-724, (2008)
[42] Hammack, J.; Scheffner, N.; Segur, H., J. fluid mech., 209, 567, (1989)
[43] Calogero, F.; Degasperis, A., Nuovo cimento B, 31, 201, (1977)
[44] Adler, M.; van Moerbeke, P., Comm. pure appl. math., 54, 153, (2001)
[45] Hu, X.B.; Ma, W.X., Phys. lett. A, 293, 161-165, (2002)
[46] Dai, C.Q.; Wu, S.S.; Cen, X., Internat. J. theoret. phys., 47, 1286, (2008)
[47] Hu, H.C.; Tang, X.Y.; Lou, S.Y., Chaos solitons fractals, 22, 327, (2004)
[48] Abramowitz, M.; Stegun, I., Handbook of mathematical functions, (1965), Dover New York
[49] Lawden, D.F., Elliptic functions and applications, (1989), Springer New York · Zbl 0562.53046
[50] Shao, Z.Q., J. math. anal. appl., 330, 511-540, (2007)
[51] Natali, F.; Pastor, A., J. math. anal. appl., 347, 428-441, (2008)
[52] Lenells, J., J. math. anal. appl., 306, 72-82, (2005)
[53] Liu, C.F.; Dai, Z.D., Appl. math. comput., 206, 272-275, (2008)
[54] Zha, Q.L.; Li, Z.B., J. math. anal. appl., 359, 794-800, (2009)
[55] Peng, Y.Z., J. phys. soc. Japan, 74, 287-291, (2005)
[56] Chen, J.L.; Dai, C.Q., Phys. scr., 77, 025002, (2008)
[57] Dai, C.Q.; Wang, Y.Y., Phys. lett. A, 372, 1810-1815, (2008)
[58] Huang, W.H.; Liu, Y.L.; Zhang, J.F., Commun. theor. phys. (Beijing), 49, 268-274, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.