×

zbMATH — the first resource for mathematics

Maslov index in semi-Riemannian submersions. (English) Zbl 1201.53078
The central issue in this article is to study the Maslov index of a horizontal geodesic. More exactly, the focal points and the Maslov index are studied of a horizontal geodesic \( \nu : I \rightarrow M\) in the total space of a semi-Riemannian submersion \(\pi : M \rightarrow B\) by determining an explicit relation with the corresponding objects along the projective geodesic \(\pi\circ \nu : I \rightarrow B\) in the base space. Also it is proved an invariance property of the Maslov index of a semi-Riemannian geodesic by arbitrary changes of trivialization of the tangent bundle along the geodesic.

MSC:
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53D12 Lagrangian submanifolds; Maslov index
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Beem J.K., Ehrlich P.E., Easley K.: Global Lorentzian Geometry. 2nd edn. Marcel Dekker Inc., NY (1996) · Zbl 0846.53001
[2] Bourguignon, J.P.: A mathematician’s visit to Kaluza-Klein theory. Rend. Sem. Mat. Univ. Politec. Torino, special issue, pp. 143–163 (1989) · Zbl 0717.53062
[3] de Gosson M.: La définition de l’indice de Maslov sans hypothèse de transversalité, C. R. Acad. Sci., Paris, Sér. I Math. 310(5), 279–282 (1990) · Zbl 0705.22012
[4] de Gosson M.: The structure of q-symplectic geometry. J. Math. Pures Appl. 71, 429–453 (1992) · Zbl 0829.58015
[5] Ehresmann, C.: Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège (1951), pp. 29–55
[6] Gray A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16, 715–737 (1967) · Zbl 0147.21201
[7] Helfer A.D.: Conjugate points on spacelike geodesics or pseudo-selfadjoint Morse-Sturm-Liouville systems. Pac. J. Math. 164, 321–350 (1994) · Zbl 0799.58018
[8] Hermann R.: A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc. Am. Math. Soc. 11, 236–242 (1960) · Zbl 0112.13701 · doi:10.1090/S0002-9939-1960-0112151-4
[9] Hogan P.A.: Kaluza-Klein theory derived from a Riemannian submersion. J. Math. Phys. 25, 2301–2305 (1984) · Zbl 0567.53060 · doi:10.1063/1.526407
[10] Javaloyes M.A., Masiello A., Piccione P.: Pseudo focal points along Lorentzian geodesics and Morse index. Adv. Nonlinear Stud. 10, 53–82 (2041) · Zbl 1209.58011
[11] Javaloyes M.A., Piccione P.: Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index. Pac. J. Math. 243(1), 43–56 (2009) · Zbl 1187.53041 · doi:10.2140/pjm.2009.243.43
[12] Javaloyes, M.A., Sánchez, M.: A note on the existence of standard splittings for conformally stationary spacetimes. Class. Quantum Gravity 25(16) (2008), 168001, 7 pp · Zbl 1147.83027
[13] Mercuri F., Piccione P., Tausk D.V.: Stability of the conjugate index, degenerate conjugate points and the Maslov index in semi-Riemannian geometry. Pac. J. Math. 206, 375–400 (2002) · Zbl 1063.53047 · doi:10.2140/pjm.2002.206.375
[14] Morvan Maslov, J.-M.: Duistermaat, Conley-Zehnder invariants in Riemannian Geometry. In: Geometry and Topology of Submanifold, V (Leuven/Brussels, 1992), pp. 174–200 · Zbl 0853.53030
[15] O’Neill B.: The fundamental equations of a submersion. Michigan Math. J. 13, 459–469 (1966) · Zbl 0145.18602 · doi:10.1307/mmj/1028999604
[16] O’Neill B.: Submersions and geodesics. Duke Math. J. 34, 363–373 (1967) · Zbl 0147.40605 · doi:10.1215/S0012-7094-67-03440-0
[17] O’Neill, B.: Semi-Riemannian geometry, vol. 103 of Pure and Applied Mathematics, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1983). With applications to relativity
[18] Piccione P., Portaluri A., Tausk D.V.: Spectral flow, Maslov index and bifurcation of semi-Riemannian geodesics. Ann. Global Anal. Geom. 25, 121–149 (2004) · Zbl 1050.58015 · doi:10.1023/B:AGAG.0000018558.65790.db
[19] Piccione P., Tausk D.V.: A note on the Morse index theorem for geodesics between submanifolds in semi-Riemannian geometry. J. Math. Phys. 40, 6682–6688 (1999) · Zbl 0982.53037 · doi:10.1063/1.533113
[20] Piccione P., Tausk D.V.: An index theorem for non periodic solutions of Hamiltonian systems. Proc. Lond. Math. Soc. 83, 351–389 (2001) · Zbl 1027.53101 · doi:10.1112/plms/83.2.351
[21] Piccione P., Tausk D.V.: The Morse index theorem in semi-Riemannian geometry. Topology 41, 1123–1159 (2002) · Zbl 1040.53052 · doi:10.1016/S0040-9383(01)00030-1
[22] Piccione P., Tausk D.V.: On the distribution of conjugate points along semi-Riemannian geodesics. Commun. Anal. Geom. 11, 33–48 (2003) · Zbl 1077.53059
[23] Piccione P., Tausk D.V. A Students’ Guide to Symplectic Spaces, Grassmannians and Maslov Index, Publicações Matemática do IMPA, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2008. ISBN: 978-85-244-0283-8
[24] Robbin J., Salamon D.: The Maslov index for paths. Topology 32(4), 827–844 (1993) · Zbl 0798.58018 · doi:10.1016/0040-9383(93)90052-W
[25] Salamon D., Zehnder E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Commun. Pure Appl. Math. 45(10), 1303–1360 (1992) · Zbl 0766.58023 · doi:10.1002/cpa.3160451004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.