Yang, Hu; Li, Wenxue; Xu, Jianwen Comparison of two estimators of parameters under Pitman nearness criterion. (English) Zbl 1201.62071 Commun. Stat., Theory Methods 39, No. 17, 3081-3094 (2010). Summary: The E. J. G. Pitman nearness criterion [Proc. Camb. Philos. Soc. 33, 212–222 (1937; Zbl 0016.36404)] is used to compare two competing united biased estimators in a linear model. In particular, a sufficient and necessary condition for one estimator being superior to the other is derived. Furthermore, a simulation study is performed to illustrate the theoretical results and several special cases are also studied. Cited in 5 Documents MSC: 62H12 Estimation in multivariate analysis 62J05 Linear regression; mixed models 62J07 Ridge regression; shrinkage estimators (Lasso) 65C60 Computational problems in statistics (MSC2010) Keywords:linear model; Pitman nearness criterion; united biased estimator Citations:Zbl 0016.36404 PDF BibTeX XML Cite \textit{H. Yang} et al., Commun. Stat., Theory Methods 39, No. 17, 3081--3094 (2010; Zbl 1201.62071) Full Text: DOI OpenURL References: [1] DOI: 10.2307/1267351 · Zbl 0202.17205 [2] Keating J. P., Pitman’s Measure of Closeness: A Comparison of Statistical Estimators (1993) · Zbl 0779.62019 [3] DOI: 10.1080/03610929308831027 · Zbl 0784.62065 [4] DOI: 10.2307/1266855 · Zbl 0265.62017 [5] DOI: 10.2307/2289801 · Zbl 0702.62049 [6] DOI: 10.2307/2283149 [7] DOI: 10.1017/S0305004100019563 · JFM 63.0515.03 [8] Rao C. R., Statistics and Related Topics pp 123– (1981) [9] DOI: 10.1016/0167-7152(90)90003-P · Zbl 0699.62014 [10] Wei L. S., Chin. J. Appl. Probab. Statist. 13 pp 225– (1997) [11] DOI: 10.1007/s003620100064 · Zbl 1099.62525 [12] DOI: 10.1007/s10255-004-0181-z · Zbl 1048.62067 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.