×

A generic interface for parallel and adaptive discretization schemes: Abstraction principles and the DUNE-FEM module. (English) Zbl 1201.65178

Summary: Starting from an abstract mathematical notion of discrete function spaces and operators, we derive a general abstraction for a large class of grid-based discretization schemes for stationary and instationary partial differential equations. Special emphasis is put on concepts for local adaptivity and parallelization with dynamic load balancing. The concepts are based on a corresponding abstract definition of a parallel and hierarchical adaptive grid given in [P. Bastian et al., Computing 82, No. 2–3, 103–119 (2008; Zbl 1151.65089)]. Based on the abstract framework, we describe an efficient object oriented implementation of a generic interface for grid-based discretization schemes that is realized in the Dune-Fem library (http://dune.mathematik.uni-freiburg.de). By using interface classes, we manage to separate functionality from data structures. Efficiency is obtained by using modern template based generic programming techniques, including static polymorphism, the engine concept, and template metaprogramming. We present numerical results for several benchmark problems and some advanced applications.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
68U20 Simulation (MSC2010)

Citations:

Zbl 1151.65089
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abdelaziz Y, Hamouine A (2008) A survey of the extended finite element. Comput Struct 86(11–12): 1141–1151
[2] Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39(5): 1749–1779 · Zbl 1008.65080
[3] Bangerth W, Hartmann R, Kanschat G (2007) deal.II–a general-purpose object-oriented finite element library. ACM Trans Math Softw 33(4):24, 27 · Zbl 1365.65248
[4] Bastian P, Birken K, Johannsen K, Lang S, Neuss N, Rentz-Reichert H, Wieners C (1997) UG–a flexible software toolbox for solving partial differential equations. Comput Visual Sci 1: 27–40 · Zbl 0970.65129
[5] Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Kornhuber R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. II: Implementation and tests in dune. Computing 82(2–3): 121–138 · Zbl 1151.65088
[6] Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. I: Abstract framework. Computing 82 (2–3): 103–119 · Zbl 1151.65089
[7] Blatt M, Bastian P (2007) The iterative solver template library. In: Kagström B, Elmroth E, Dongarra J, Wasniewski J (eds) Applied parallel computing–state of the art in scientific computing. Springer, Berlin, pp 666–675
[8] Brenner SC, Ridgway Scott L (2008) The mathematical theory of finite element methods. In: Texts in applied mathematics, 3rd edn, vol 15. Springer, New York
[9] Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, Berlin · Zbl 0788.73002
[10] Burri A, Dedner A, Diehl D, Klöfkorn R, Ohlberger M (2006) A general object oriented framework for discretizing nonlinear evolution equations. In: Shokin YI, Resch M, Danaev N, Orunkhanov M, Shokina N (eds) Advances in high performance computing and computational sciences. Notes on numerical fluid mechanics and multidiciplinary design (NNFM), vol 93. Springer, Berlin · Zbl 1310.76113
[11] Burri A, Dedner A, Klöfkorn R, Ohlberger M (2006) An efficient implementation of an adaptive and parallel grid in dune. In: Krause E, Shokin YI, Resch M, Shokina N (eds) Advances in high performance computing and computational sciences. Notes on numerical fluid mechanics adn multidisciplinary design (NNFM), vol 91. Springer, Berlin
[12] Castillo P, Rieben R, White D (2005) FEMSTER: an object-oriented class library of high-order discrete differential forms. ACM Trans Math Softw 31(4): 425–457 · Zbl 1136.78330
[13] Ciarlet PG (1987) The finite element methods for elliptic problems. North-Holland, Amsterdam
[14] Cockburn B, Shu C-W (2001) Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput 16(3): 173–261 · Zbl 1065.76135
[15] Davis TA (2004) Algorithm 832: UMFPACK v4.3–an unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30(2): 196–199 · Zbl 1072.65037
[16] Dedner A, Klöfkorn R (2008) A generic stabilization approach for higher order Discontinuous Galerkin methods for convection dominated problems. Preprint no. 8. Submitted to SIAM Sci. Comput. Mathematisches Institut, Unversität Freiburg. http://www.mathematik.uni-freiburg.de/IAM/homepages/robertk/postscript/dedner_kloefkorn_limiter.pdf
[17] Dedner A, Luethi M, Albrecht T, Vetter T (2007) Curvature guided level set registration using adaptive finite elements. In: Hamprecht F, Schnorr C, Jahne B (eds) Proceedings of the 29th annual symposium of the German association for pattern recognition. Springer, Berlin
[18] Dedner A, Rohde C, Schupp B, Wesenberg M (2004) A parallel, load balanced mhd code on locally adapted, unstructured grids in 3d. Comput Visual Sci 7: 79–96 · Zbl 1120.76338
[19] Diehl D (2007) Higher order schemes for simulation of compressible liquid-vapor flows with phase change. PhD thesis, Universität Freiburg. http://www.freidok.uni-freiburg.de/volltexte/3762/ · Zbl 1161.76002
[20] Dune Fem Dune-Fem–The FEM Module. http://dune.mathematik.uni-freiburg.de/ · Zbl 1201.65178
[21] Eymard R, Galluoët T, Herbin R (2000) Finite volume methods. In: Handbook of numerical analysis, vol VII. North-Holland, Amsterdam, pp 713–1020 · Zbl 0981.65095
[22] Gerbeau J-F, Perthame B (2001) Derivation of viscous Saint–Venant system for laminar shallow water; numerical validation. Discrete Contin Dyn Syst Ser B 1(1): 89–102 · Zbl 0997.76023
[23] Gersbacher C (2008) Local Discontiunous Galerkin Verfahren zur Simulation flacher dreidimensionaler Strömungen mit freier Oberfläche. Diploma thesis, Universität Freiburg
[24] Haasdonk B, Ohlberger M (2008) Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN Math Model Numer Anal 42(2): 277–302 · Zbl 1388.76177
[25] Henning P, Ohlberger M (2009) Advection diffusion problems with rapidly oscillating coefficients and large expected drift. Part 2: The heterogeneous multiscale finite element method. Technical report, University of Münster (to be submitted) · Zbl 1264.65161
[26] Karypis G, Kumar V (1999) A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1): 359–392 · Zbl 0915.68129
[27] Karypis G, Kumar V (1999) Multilevel k-way partitioning scheme for irregular graphs. SIAM Rev 41(2): 278–300 · Zbl 0918.68073
[28] Kröner D (1997) Numerical schemes for conservation laws. Wiley, Stuttgart · Zbl 0872.76001
[29] Lehn ML (2008) FLENS A flexible library for efficient numerical solutions. PhD thesis, Fakultät für Mathematik und Wirtschaftswissenschaften, Universität Ulm. http://flens.sourceforge.net/
[30] Leveque RJ (2002) Finite volume methods for hyperbolic problems. In: Cambridge texts in applied mathematics. Cambridge University Press, Cambridge
[31] Patera AT, Rozza G (2007) Reduced Basis approximation and a posteriori error estimation for parametrized partial differential equations. MIT, Version 1.0, Copyright MIT 2006-2007. In: (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering (to appear)
[32] Schmidt A, Siebert KG (2005) Design of adaptive finite element software–the finite element toolbox ALBERTA. Springer, Berlin · Zbl 1068.65138
[33] Veldhuizen T The object-oriented numerics page. http://www.oonumerics.org/oon/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.