×

zbMATH — the first resource for mathematics

High order conservative finite difference scheme for variable density low Mach number turbulent flows. (English) Zbl 1201.76139
Summary: The high order conservative finite difference scheme of Morinishi et al. [Y. Morinishi, O.V. Vasilyev and T. Ogi, J. Comput. Phys. 197, No. 2, 686–710 (2004; Zbl 1079.76602)] is extended to simulate variable density flows in complex geometries with cylindrical or Cartesian non-uniform meshes. The formulation discretely conserves mass, momentum, and kinetic energy in a periodic domain. In the presence of walls, boundary conditions that ensure primary conservation have been derived, while secondary conservation is shown to remain satisfactory. In the case of cylindrical coordinates, it is desirable to increase the order of accuracy of the convective term in the radial direction, where most gradients are often found. A straightforward centerline treatment is employed, leading to good accuracy as well as satisfactory robustness. A similar strategy is introduced to increase the order of accuracy of the viscous terms. The overall numerical scheme obtained is highly suitable for the simulation of reactive turbulent flows in realistic geometries, for it combines arbitrarily high order of accuracy, discrete conservation of mass, momentum, and energy with consistent boundary conditions. This numerical methodology is used to simulate a series of canonical turbulent flows ranging from isotropic turbulence to a variable density round jet. Both direct numerical simulation (DNS) and large eddy simulation (LES) results are presented. It is observed that higher order spatial accuracy can improve significantly the quality of the results. The error to cost ratio is analyzed in details for a few cases. The results suggest that high order schemes can be more computationally efficient than low order schemes.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76F99 Turbulence
Software:
hypre
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ferziger, J.H.; Peric, M., Computational methods for fluid dynamics, (2002), Springer Berlin · Zbl 0869.76003
[2] Kravchenko, A.G.; Moin, P., On the effect of numerical errors in large eddy simulations of turbulent flows, J. comput. phys., 131, 310-322, (1997) · Zbl 0872.76074
[3] Orszag, S.A., On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components, J. atmos. sci., 28, 1074, (1971)
[4] Patterson, G.S.; Orszag, S.A., Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions, Phys. fluids, 14, 2538-2541, (1971) · Zbl 0225.76033
[5] Lele, S.K., Compact finite-difference schemes with spectral-like resolution, J. comput. phys., 103, 16-42, (1992) · Zbl 0759.65006
[6] Mittal, R.; Moin, P., Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows, Aiaa j., 35, 1415-1417, (1997) · Zbl 0900.76336
[7] Park, M.; Yoo, J.Y.; Choi, H., Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes, J. comput. phys., 198, 580-616, (2004) · Zbl 1116.76373
[8] Harlow, F.H.; Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. fluids, 8, 2182-2189, (1965) · Zbl 1180.76043
[9] Akselvoll, K.; Moin, P., Large-eddy simulation of turbulent confined coannular jets, J. fluid mech., 315, 387-411, (1996) · Zbl 0875.76444
[10] C.D. Pierce, P. Moin, Progress-variable approach for large eddy simulation of turbulent combustion, Rep. TF80, Flow Physics and Computation Division, Dept. Mech. Eng., Stanford Univ., 2001.
[11] Treurniet, T.C.; Nieuwstadt, F.T.M.; Boersma, B.J., Direct numerical simulation of homogeneous turbulence in combination with premixed combustion at low Mach number modelled by the G-equation, J. fluid mech., 565, 25-62, (2006) · Zbl 1177.76167
[12] Verzicco, R.; Orlandi, P., A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates, J. comput. phys., 123, 402-414, (1996) · Zbl 0849.76055
[13] Lund, T.S.; Moin, P., Large-eddy simulation of a concave wall boundary layer, Int. J. heat fluid flow, 17, 290-295, (1996)
[14] Nagarajan, S.; Lele, S.K.; Ferziger, J.H., A robust high-order compact method for large eddy simulation, J. comput. phys., 191, 392-419, (2003) · Zbl 1051.76030
[15] Morinishi, Y.; Lund, T.S.; Vasilyev, O.V.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J. comput. phys., 143, 90-124, (1998) · Zbl 0932.76054
[16] Nicoud, F., Conservative high-order finite difference schemes for low-Mach number flows, J. comput. phys., 158, 71-97, (2000) · Zbl 0973.76068
[17] Vasilyev, O.V., High order finite difference schemes on non-uniform meshes with good conservation properties, J. comput. phys., 157, 746-761, (2000) · Zbl 0959.76063
[18] Morinishi, Y.; Vasilyev, O.V.; Ogi, T., Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations, J. comput. phys., 197, 686-710, (2004) · Zbl 1079.76602
[19] Bilger, R.W., Turbulent flows with nonpremixed reactants, () · Zbl 0662.76115
[20] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. comput. phys., 115, 200-212, (1994) · Zbl 0811.65076
[21] Jiang, G.S.; Shu, C.W., Efficient implementation of weighted ENO schemes, J. comput. phys., 126, 202-228, (1996) · Zbl 0877.65065
[22] Nourgaliev, R.R.; Theofanous, T.G., High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set, J. comput. phys., 224, 836-866, (2007) · Zbl 1124.76043
[23] Leonard, B.P., A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. methods appl. mech. eng., 19, 59-98, (1979) · Zbl 0423.76070
[24] Kim, J.; Moin, P., Application of a fractional-step method to incompressible navier – stokes equations, J. comput. phys., 59, 308-323, (1985) · Zbl 0582.76038
[25] van der Vorst, H.A., Iterative Krylov methods for large linear systems, (2003), Cambridge University Press Cambridge · Zbl 1023.65027
[26] Falgout, R.D.; Yang, U.M., Hypre: a library of high performance preconditioners, () · Zbl 1056.65046
[27] Choi, H.; Moin, P., Effects of the computational time step on numerical solutions of turbulent flow, J. comput. phys., 113, 1-4, (1994) · Zbl 0807.76051
[28] Ham, F.E.; Lien, F.S.; Strong, A.B., A fully conservative second-order finite different scheme for incompressible flow on nonuniform grids, J. comput. phys., 177, 117-133, (2002) · Zbl 1066.76044
[29] T.S. Lundgren, Linearly forced isotropic turbulence, in: Annual Research Briefs, Center for Turbulence Research, Stanford, 2003.
[30] Eswaran, V.; Pope, S.B., Direct numerical simulations of the turbulent mixing of a passive scalar, Phys. fluids, 31, 506-520, (1988)
[31] Orlanski, I., A simple boundary condition for unbounded hyperbolic flows, J. comput. phys., 21, 251-269, (1976) · Zbl 0403.76040
[32] Sani, R.L.; Shen, J.; Pironneau, O.; Gresho, P.M., Pressure boundary condition for the time-dependent incompressible navier – stokes equations, Int. J. numer. methods fluids, 50, 673-682, (2006) · Zbl 1155.76322
[33] Gresho, P.M., Incompressible fluid dynamics: some fundamental formulation issues, Annu. rev. fluid mech., 23, 413-453, (1991) · Zbl 0717.76006
[34] Eggels, J.G.M.; Unger, F.; Weiss, M.H.; Westerweel, J.; Adrian, R.J.; Friedrich, R.; Nieuwstadt, F.T.M., Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment, J. fluid mech., 268, 175-209, (1994)
[35] Fukagata, K.; Kasagi, N., Highly energy-conservative finite difference method for the cylindrical coordinate system, J. comput. phys., 181, 478-498, (2002) · Zbl 1178.76260
[36] Constantinescu, G.S.; Lele, S.K., A highly accurate technique for the treatment of flow equations at the polar axis in cylindrical coordinates using series expansions, J. comput. phys., 183, 165-186, (2002) · Zbl 1058.76580
[37] Meleshko, V.V.; Heijst, G.J.F., On chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid, J. fluid mech., 272, 157-182, (1994) · Zbl 0819.76018
[38] Yeung, P.K.; Pope, S.B., Lagrangian statistics from direct numerical simulations of isotropic turbulence, J. fluid mech., 207, 531-586, (1989)
[39] Rosales, C.; Meneveau, C., Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties, Phys. fluids, 17, 095106-1-095106-8, (2005) · Zbl 1187.76449
[40] Comte-Bellot, G.; Corrsin, S., Simple Eulerian time correlation in full and narrow band velocity signals in grid generated, isotropic turbulence, J. fluid mech., 48, 273-337, (1971)
[41] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H., A dynamic subgrid-scale eddy viscosity model, Phys. fluids A, 3, 1760-1765, (1991) · Zbl 0825.76334
[42] Lilly, D.K., A proposed modification of the Germano subgrid-scale closure method, Phys. fluids A, 4, 633-635, (1992)
[43] Ghosal, S., An analysis of numerical errors in large-eddy simulations of turbulence, J. comput. phys., 125, 187-206, (1996) · Zbl 0848.76043
[44] Chow, F.K.; Moin, P., A further study of numerical errors in large-eddy simulations, J. comput. phys., 184, 366-380, (2003) · Zbl 1047.76034
[45] Meneveau, C.; Lund, T.S.; Cabot, W.H., A Lagrangian dynamic subgrid-scale model of turbulence, J. fluid mech., 319, 353-385, (2000) · Zbl 0882.76029
[46] Amielh, M.; Djeridane, T.; Anselmet, F.; Fulachier, L., Velocity near-field of variable density turbulent jets, Int. J. heat mass transfer, 39, 2149-4164, (1996)
[47] Djeridane, T.; Amielh, M.; Anselmet, F.; Fulachier, L., Velocity turbulence properties in the near-field region of axisymmetric variable density jets, Phys. fluids, 6, 1614-1630, (1996)
[48] Réveillon, J.; Vervisch, L., Response of the dynamic LES model to heat release induced effects, Phys. fluids, 8, 2248-2250, (1996) · Zbl 1027.76605
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.