zbMATH — the first resource for mathematics

The bias in Black-Scholes/Black implied volatility: an analysis of equity and energy markets. (English) Zbl 1201.91210
Summary: In this paper we examine the extent of the bias between Black and Scholes (1973)/Black (1976) implied volatility and realized term volatility in the equity and energy markets. Explicitly modeling a market price of volatility risk, we extend previous work by demonstrating that Black-Scholes is an upward-biased predictor of future realized volatility in S&P 500/S&P 100 stock-market indices. Turning to the Black options-on-futures formula, we apply our methodology to options on energy contracts, a market in which crises are characterized by a positive correlation between price-returns and volatilities: After controlling for both term-structure and seasonality effects, our theoretical and empirical findings suggest a similar upward bias in the volatility implied in energy options contracts. We show the bias in both Black-Scholes/Black implied volatilities to be related to a negative market price of volatility risk.

91G30 Interest rates, asset pricing, etc. (stochastic models)
91B24 Microeconomic theory (price theory and economic markets)
91G80 Financial applications of other theories
Full Text: DOI
[1] Akaike, H. (1983). ”Information Measures and Model Selection,” Bulletin of the International Statistical Institute: Proceedings of the 44th Session 1, 277–290. · Zbl 0578.62059
[2] Bakshi, G., C. Cao, and Z. Chen. (1997). ”Empirical Performance of Alternative Option Pricing Models,” Journal of Finance 52, 2003–2049. · doi:10.2307/2329472
[3] Bates, D. (1996). ”Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options,” Review of Financial Studies 9, 69–107. · doi:10.1093/rfs/9.1.69
[4] Black, F. (1976). ”Studies of Stock Price Volatility Changes.” In Proceedings of the 1976 Meetings of the Business and Economics Statistics Section. American Statistical Association, pp. 177–181.
[5] Black, F. and M. Scholes. (1973). ”The Pricing of Options and Corporate Liabilities,” Journal of Political Economy 81, 637–654. · Zbl 1092.91524 · doi:10.1086/260062
[6] Bollerslev, T. (1986) ”Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 31, 307–327. · Zbl 0616.62119 · doi:10.1016/0304-4076(86)90063-1
[7] Canina, L. and S. Figlewski. (1993). ”The Information Content of Implied Volatility,” Review of Financial Studies 6, 659–681. · doi:10.1093/rfs/6.3.659
[8] Chernov, M. and E. Ghysels. (2000). ”A Study Towards a Unified Approach to the Joint Estimation of Objective and Risk Neutral Measures for the Purpose of Options Valuation,” Journal of Financial Economics 56, 407–458. · doi:10.1016/S0304-405X(00)00046-5
[9] Christensen, B. and N. Prabhala. (1998). ”The Relationship Between Implied and Realized Volatility,” Journal of Financial Economics 50, 125–150. · doi:10.1016/S0304-405X(98)00034-8
[10] Day, T. and C. Lewis. (1993). ”Forecasting Futures Market Volatility,” Journal of Derivatives 1, 33–50. · doi:10.3905/jod.1993.407876
[11] Doran, J. and E. Ronn. (2006). ”Computing the Market Price of Volatility Risk in the Energy Commodity Markets,” Florida State University Working Paper.
[12] French, K., W. Schwert, and R. Stambaugh. (1987). ”Expected Stock Returns and Volatility,” Journal of Financial Economics 19, 3–29. · doi:10.1016/0304-405X(87)90026-2
[13] Gallant, A. and G. Tauchen. (1998). ”Reprojecting Partially Observed Systems with Application to Interest Rate Diffusions,” Journal of American Statistical Association 93, 10–24. · Zbl 0920.62132 · doi:10.2307/2669598
[14] Harvey, C. and R. Whaley. (1992). ”Market Volatility Prediction and the Efficiency of the S&P 100 Index Option Market,” Journal of Financial Economics 31, 43–73. · doi:10.1016/0304-405X(92)90011-L
[15] Heston, S. (1993). ”A Closed-Form Solution of Options with Stochastic Volatility with Applications to Bond and Currency Options,” Review of Financial Studies 6, 327–343. · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[16] Hentschel, L. (2003). ”Errors in Implied Volatility Estimation,” Journal of Financial and Quantitative Analysis 38, 779–810. · doi:10.2307/4126743
[17] Hull, J. and A. White. (1987). ”The Pricing of Options on Assets with Stochastic Volatilities,” Journal of Finance 42, 281–300. · Zbl 1126.91369 · doi:10.2307/2328253
[18] Jackwerth, J. and M. Rubinstein. (1996). ”Recovering Probability Distributions from Option Prices,” Journal of Finance 51, 1611–1631. · doi:10.2307/2329531
[19] Jorion, P. (1995). ”Predicting Volatility in the Foreign Exchange Markets,” Journal of Finance 6, 327–343.
[20] Lamoureux, C. and W. Lastrapes. (1993). ”Forecasting Stock Return Variance: Towards Understanding Stochastic Implied Volatility,” Review of Financial Studies 6, 293–326. · doi:10.1093/rfs/6.2.293
[21] Pan, J. (2000). ”The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time-Series Study,” Journal of Financial Economics 63, 3–50. · doi:10.1016/S0304-405X(01)00088-5
[22] Poon, Ser Huang. (2005). A Practical Guide to Forecasting Financial Market Volatility. Wiley Publishing.
[23] Szakmary, A., E. Ors, J. Kim, and W. Davidson. (2003). ”The Predictive Power of Implied Volatility: Evidence from 35 Futures Markets,” Journal of Banking & Finance 27, 2151–2175. · doi:10.1016/S0378-4266(02)00323-0
[24] Schwartz, E. (1997). ”The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging,” Journal of Finance 52, 923–973. · doi:10.2307/2329512
[25] Schwartz, E. and J. Smith. (2000). ”Short-Term Variations and Long-Term Dynamics in Commodity Prices,” Management Science 46, 893–911. · Zbl 06005901 · doi:10.1287/mnsc.46.7.893.12034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.