The non-isospectral modified Kadomtsev-Petviashvili equation with self-consistent sources and its coupled system. (English) Zbl 1202.35261

Summary: A new algebraic method called source generation procedure is applied to construct non-isospectral soliton equations with self-consistent sources. As results, the non-isospectral modified Kadomtsev-Petviashvili equation with self-consistent sources (mKPESCS) and its Gram-type determinant solutions are obtained by using the source generation procedure. Furthermore, a new coupled system of the non-isospectral mKPESCS and its Pfaffian solutions are constructed.


35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs
35C05 Solutions to PDEs in closed form
Full Text: DOI


[1] Ablowitz, M.J.; Clarkson, M.J., Soliton, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press Cambridge · Zbl 0762.35001
[2] Konopelchenko, B.G., Introduction to multidimensional integrable equations: the inverse spectral transform in 2+1 dimensions, (1992), Plenum New York · Zbl 0877.35118
[3] Konopelchenko, B.G., Soliton in multidimensional: inverse spectral transform method, (1993), World Scientific River Edge, NJ · Zbl 0836.35002
[4] Hirota, R.; Ohta, Y., Hierarchies of coupled soliton equations, J. phys. soc. jpn., 60, 798-809, (1991) · Zbl 1160.37395
[5] Hirota, R., Direct methods in soliton theory, (1992), Iwanami Shoten Tokyo, (in Japanese)
[6] Hu, X.B.; Wang, H.Y., Construction of dkp and BKP equations with self-consistent sources, Inverse prob., 22, 1903-1920, (2006) · Zbl 1105.37043
[7] Wang, H.Y.; Hu, X.B.; Tam, H.W., On the pfaffianized-KP equation with self-consistent sources, J. math. anal. appl., 338, 82-90, (2008) · Zbl 1132.35466
[8] Gilson, C.R.; Nimmo, J.J.C.; Tsujimoto, S., Pfaffianization of the discrete KP equation, J. phys. A: math. gen., 34, 10569-10575, (2001) · Zbl 1054.37041
[9] Ohta, Y.; Nimmo, J.J.C.; Gilson, C.R., A bilinear approach to a Pfaffian self-dual yang – mills equation, Glasg. math. J. A, 43, 99-108, (2001) · Zbl 0986.35109
[10] Hu, X.B.; Zhao, J.X.; Tam, H.W., Pfaffianization of the two-dimensional Toda lattice, J. math. anal. appl., 296, 256-261, (2004) · Zbl 1051.37037
[11] Mel’nikov, V.K., Interaction of solitary waves in the system described by the KP equation with a self-consistent source, Comm. math. phys., 126, 210-215, (1989) · Zbl 0682.76013
[12] Mel’nikov, V.K., Interaction of the korteweg – de Vries equation with a source, Inverse prob., 6, 233-246, (1990) · Zbl 0712.35088
[13] Zeng, Y.B.; Ma, W.X.; Lin, R.L., Integration of the soliton hierarchy with self-consistent sources, J. math. phys., 41, 5453-5489, (2000) · Zbl 0968.37023
[14] Zeng, Y.B.; Ma, W.X.; Shao, Y.J., Two binary Darboux transformations for the KdV equation with self-consistent sources, J. math. phys., 42, 2113-2128, (2001) · Zbl 1005.37044
[15] Matsuno, Y., Bilinear backlund transformations for the KdV equation with a source, J. phys. A, 24, L273-L277, (1991) · Zbl 0736.35103
[16] Hu, X.B., Nonlinear superposition formula of the KdV equation with a source, J. phys. A, 24, 5489-5497, (1991) · Zbl 0756.35080
[17] Hu, X.B., The higher-order KdV equation with a source and nonlinear superposition formula, Chaos soliton fract., 7, 211-215, (1996) · Zbl 1080.35535
[18] Zhang, D.J.; Chen, D.Y., The N-soliton solutions of the sine-Gordon equation with self-consistent sources, Phys. A, 321, 467-481, (2003) · Zbl 1011.35116
[19] Wang, H.Y., Integrability of the semi-discrete Toda equation with self-consistent source, J. math. anal. appl., 330, 1128-1138, (2007) · Zbl 1112.37065
[20] Ma, W.X.; Stramp, W., An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems, Phys. lett. A, 185, 277-286, (1994) · Zbl 0992.37502
[21] Ma, W.X.; Zhou, Z.X., Binary symmetry constraints of N-wave interaction equations in 1+1 and 2+1 dimensions, J. math. phys., 42, 4345-4382, (2001) · Zbl 1063.37065
[22] Zeng, Y.B.; Shao, Y.J.; Ma, W.X., Integral-type Darboux transformation for the mkdv hierarchy with self-consistent sources, Commun. theor. phys., 38, 641-648, (2002) · Zbl 1267.37082
[23] Ma, W.X., Soliton, positon and negaton solutions to a schrodinger with self-consistent sources equation, J. phys. soc. jpn., 72, 3017-3019, (2003) · Zbl 1133.81332
[24] Chen, H.H.; Liu, C.S., Solitons in nonuniform media, Phys. rev. lett., 37, 693-697, (1976)
[25] Hirota, R.; Satsuma, J., N-soliton solution of the KdV equation with loss and nonuniformity terms, J. phys. soc. jpn., 41, 2141-2142, (1976)
[26] Gupta, M.R., Exact inverse scattering solution of a nonlinear evolution equation in a nonuniform media, Phys. lett. A, 72, 420-421, (1979)
[27] Sun, Y.P.; Zhao, H.Q., New non-isospectral integrable couplings of the AKNS system, Appl. math. comput., 203, 163-170, (2008) · Zbl 1154.37366
[28] Chen, D.Y., Soliton introduction, (2006), Science Press Beijing, (in Chinese)
[29] Deng, S.F., The multisoliton solutions for nonisospectral mkp equation, Phys. lett. A, 372, 460-468, (2008)
[30] Sun, Y.P.; Tam, H.W., Grammian solutions and pfaffianization of the non-isospectral modified kadomtsev – petviashvili equation, Phys. lett. A, 372, 4412-4417, (2008) · Zbl 1221.35365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.