zbMATH — the first resource for mathematics

A study on KdV and Gardner equations with time-dependent coefficients and forcing terms. (English) Zbl 1202.35266
Summary: We study the KdV equation and the Gardner equation with time-dependent coefficients and forcing term for each equation. A generalized wave transformation is used to convert each equation to a homogeneous equation. The soliton ansatz is applied to the homogeneous equations to obtain soliton solutions.

35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs
35C08 Soliton solutions
Full Text: DOI
[1] Rong, Y.J.; Jian, M.J., Complexiton solutions of a special coupled mkdv equation, Chin. phys. lett., 25, 1527-1530, (2008)
[2] Triki, H.; Wazwaz, A.M., Sub-ODE method and soliton solutions for the variable-coefficient mkdv equation, Appl. math. comput., 214, 370-373, (2009) · Zbl 1171.35467
[3] Triki, H.; Wazwaz, A.M., Bright and dark soliton solutions for a K(m,n) equation with t-dependent coefficients, Phys. lett. A, 373, 2162-2215, (2009) · Zbl 1229.35232
[4] Biswas, A., 1-soliton solution of the B(m,n) equation with generalized evolution, Commun. nonlinear sci. numer. simul., 14, 3226-3229, (2009) · Zbl 1221.35305
[5] Biswas, A., 1-soliton solution of the K(m,n) equation with generalized evolution, Phys. lett. A, 372, 4601-4602, (2008) · Zbl 1221.35099
[6] Dehghan, M.; Shokri, A., A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Comput. math. simul., 79, 700-715, (2008) · Zbl 1155.65379
[7] Hirota, R., The direct method in soliton theory, (2004), Cambridge University Press Cambridge
[8] Hereman, W.; Nuseir, A., Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. comput. simul., 43, 13-27, (1997) · Zbl 0866.65063
[9] Wazwaz, A.M., Partial differential equations and solitary waves theorem, (2009), Springer and HEP Berlin
[10] Wazwaz, A.M., Multiple soliton solutions for coupled KdV and coupled KP systems, Can. J. phys., 87, 12, 1227-1232, (2010)
[11] Wazwaz, A.M., Multiple soliton solutions for the (2+1)-dimensional asymmetric nizhanik – novikov – veselov equation, Nonlinear anal. ser. A: theory, methods appl., 72, 1314-1318, (2010) · Zbl 1180.35448
[12] Wazwaz, A.M., The (2+1) and (3+1)-dimensional CBS equation: multiple soliton solutions and multiple singular soliton solutions, Multiple, zeitschrift fur naturforschung A (ZNA), 65a, 173-181, (2010)
[13] Wazwaz, A.M., Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. math. comput., 190, 1198-1206, (2007) · Zbl 1123.65106
[14] Wazwaz, A.M., New solitons and kink solutions for the gardner equation, Commun. nonlinear sci. numer. simul., 12, 8, 1395-1404, (2007) · Zbl 1118.35352
[15] Wazwaz, A.M., Multiple-soliton solutions for the Boussinesq equation, Appl. math. comput., 192, 479-486, (2007) · Zbl 1193.35201
[16] Wazwaz, A.M., The hirota’s direct method and the tanh – coth method for multiple-soliton solutions of the sawada – kotera – ito seventh-order equation, Appl. math. comput., 199, 1, 133-138, (2008) · Zbl 1153.65363
[17] Wazwaz, A.M., The hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves, Appl. math. comput., 201, 1/2, 489-503, (2008) · Zbl 1143.76018
[18] Wazwaz, A.M., Solitons and singular solitons for the gardner-KP equation, Appl. math. comput., 204, 1, 162-169, (2008) · Zbl 1159.35432
[19] Wazwaz, A.M., Multiple kink solutions and multiple singular kink solutions for (2+1)-dimensional nonlinear models generated by the jaulent – miodek hierarchy, Phys. lett. A, 373, 1844-1846, (2009) · Zbl 1229.37100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.