Nonidentifiability of the two-state Markovian arrival process. (English) Zbl 1202.60119

Summary: We consider the problem of identifiability for the two-state Markovian arrival process (MAP\(_{2}\)). In particular, we show that the MAP\(_{2}\) is not identifiable providing the conditions under which two different sets of parameters induce identical stationary laws for the observable process.


60J05 Discrete-time Markov processes on general state spaces
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
Full Text: DOI


[1] Asmussen, S. and Koole, G. (1993). Marked point processes as limits of Markovian arrival streams. J. Appl. Prob. 30, 365–372. JSTOR: · Zbl 0778.60035
[2] Ausín, M. C., Wiper, M. P. and Lillo, R. E. (2008). Bayesian prediction of the transient behaviour and busy period in short- and long-tailed GI/G/1 queueing systems. Comput. Statist. Data Anal. 52, 1615–1635. · Zbl 1452.62215
[3] Bean, N. G. and Green, D. A. (2000). When is a MAP poisson? Math. Comput. Modelling 31, 31–46. · Zbl 1042.60530
[4] Chakravarthy, S. R. (2001). The batch Markovian arrival process: a review and future work. In Advances in Probability Theory and Stochastic Processes , Notable Publications, NJ, pp. 21–49.
[5] Fearnhead, P. and Sherlock, C. (2006). An exact Gibbs sampler for the Markov-modulated poisson process. J. R. Statist. Soc. B 68, 767–784. · Zbl 1110.62131
[6] Green, D. (1998). MAP/PH/1 departure processes. Doctoral Thesis, School of Applied Mathematics, University of Adelaide.
[7] He, Q.-M. and Zhang, H. (2006). PH-invariant polytopes and Coxian representations of phase type distributions. Stoch. Models 22, 383–409. · Zbl 1159.60340
[8] He, Q.-M. and Zhang, H. (2008). An algorithm for computing minimal Coxian representations. INFORMS J. Computing 20, 179–190. · Zbl 1243.90045
[9] He, Q.-M. and Zhang, H. (2009). Coxian representations of generalized Erlang distributions. Acta Math. Appl. Sinica 25, 489–502. · Zbl 1177.60017
[10] Heffes, H. (1980). A class of data traffic processes-covariance function characterization and related queueing results. Bell Systems Tech. J. 59, 897–929. · Zbl 0439.90032
[11] Heffes, H. and Lucantoni, D. (1986). A Markov-modulated characterization of packetized voice and data traffic and related statistical multiplexer performance. IEEE J. Sel. Areas Commun. 4, 856–868.
[12] Heyman, D. P. and Lucantoni, D. (2003). Modeling multiple IP traffic streams with rate limits. IEEE/ACM Trans. Networking 11, 948–958.
[13] Ito, H., Armari, S.-I. and Kobayashi, K. (1992). Identifiability of hidden Markov information sources and their minimum degrees of freedom. IEEE Trans. Inf. Theory 38, 324–333. · Zbl 0742.60041
[14] Leroux, B. G. (1992). Maximum-likelihood estimation for hidden Markov models. Stoch. Process. Appl. 40, 127–143. · Zbl 0738.62081
[15] Lucantoni, D. M. (1993). The BMAP/G/1 queue: a tutorial. In Performance Evaluation of Computer and Communication Systems , eds L. Donatiello and R. Nelson, Springer, Berlin, pp. 330–358.
[16] Lucantoni, D. M., Meier-Hellstern, K. S. and Neuts, M. F. (1990). A single-server queue with server vacations and a class of nonrenewal arrival processes. Adv. Appl. Prob. 22, 676–705. JSTOR: · Zbl 0709.60094
[17] Neuts, M. F. (1979). A versatile Markovian point process. J. Appl. Prob. 16, 764–779. JSTOR: · Zbl 0422.60043
[18] Nielsen, B. F. (2000). Modelling long-range dependent and heavy-tailed phenomena by matrix analytic methods. In Advances in Algorithmic Methods for Stochastic Models , Notable Publications, pp. 265–278.
[19] Ramaswami, V. (1980). The N/G/1 queue and its detailed analysis. Adv. Appl. Prob. 12, 222–261. JSTOR: · Zbl 0424.60093
[20] Ramirez, P., Lillo, R. E. and Wiper, M. P. (2008). On identifiability of MAP processes. Technical Report, Statistics and Econometrics Working Papers ws084613, Universidad Carlos III de Madrid.
[21] Rydén, T. (1994). Consistent and asymptotically normal parameter estimates for hidden Markov models. Ann. Statist. 22, 1884–1895. · Zbl 0831.62060
[22] Rydén, T. (1996). An EM algorithm for estimation in Markov-modulated Poisson processes. Comput. Statist. Data Anal. 21, 431–447. · Zbl 0875.62405
[23] Rydén, T. (1996). On identifiability and order of continous-time aggregated Markov chains, Markov-modulated Poisson processes, and phase-type distributions. J. Appl. Prob. 33, 640–653. JSTOR: · Zbl 0865.60064
[24] Scott, S. L. (1999). Bayesian analysis of a two-state Markov modulated Poisson process. J. Comput. Graph. Statist. 8, 662–670.
[25] Scott, S. L. and Smyth, P. (2003). The Markov modulated Poisson process and Markov Poisson cascade with applications to web traffic modeling. In Bayesian Statistics , 7 (Tenerife, 2002), Oxford University Press, New York, pp. 671–680.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.