zbMATH — the first resource for mathematics

Convergence analysis of nonmonotone Levenberg-Marquardt algorithms for complementarity problem. (English) Zbl 1202.65073
The convergence of two nonmonotone Levenberg-Marquardt algorithms for nonlinear complementarity problem is studied and proved. Under some mild assumptions, and requiring only the solution of a linear system at each iteration, the proposed nonmonotone Levenberg-Marquardt algorithms are shown to be globally convergent.

65K05 Numerical mathematical programming methods
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDF BibTeX Cite
Full Text: DOI
[1] Fischer, A., Solution of monotone complementarity problems with locally Lipschitzian functions, Math. program., 76, 513-532, (1997) · Zbl 0871.90097
[2] Fischer, A.; Jeyakumar, V.; Luc, D.T., Solution point characterizations and convergence analysis of a descent algorithm for nonsmooth continuous complementarity problems, J. optim. theory appl., 110, 493-513, (2001) · Zbl 1064.90048
[3] Facchinei, F.; Kanzow, C., A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems, Math. program., 76, 493-512, (1997) · Zbl 0871.90096
[4] Fasano, G.; Lampariello, F.; Sciandrone, M., A truncated nonmonotone gauss – newton method for large-scale nonlinear least-squares problems, Comput. optim. appl., 34, 343-358, (2006) · Zbl 1122.90094
[5] Gao, D.Y., Analytic solutions and triality theory for nonconvex and nonsmooth variational problems with applications, Nonlinear anal., 42, 1161-1193, (2000) · Zbl 0983.49024
[6] Gao, Y., Newton methods for solving two classes of nonsmooth equations, Appl. math., 46, 215-229, (2001) · Zbl 1068.65063
[7] Geiger, C.; Kanzow, C., On the resolution of monotone complementarity problems, Comput. optim. appl., 5, 155-173, (1996) · Zbl 0859.90113
[8] Huang, Z.; Ma, G., On the computation of an element of Clarke generalized Jacobian for a vector-valued MAX function, Nonlinear anal. TMA, (2009)
[9] Jiang, H., Unconstrained minimization approaches to nonlinear complementarity problems, J. global optim., 9, 169-181, (1996) · Zbl 0868.90122
[10] Kanzow, C., Nonlinear complementarity as unconstrained optimization, J. optim. theory appl., 88, 139-155, (1996) · Zbl 0845.90120
[11] Kanzow, C.; Yamashita, N.; Fukushima, M., Levenberg – marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints, J. comput. appl. math., 173, 321-343, (2005) · Zbl 1065.65070
[12] Ma, C.F.; Jiang, L.; Wang, D., The convergence of a smoothing damped gauss – newton method for nonlinear complementarity problem, Nonlinear anal. RWA, 10, 2072-2087, (2009) · Zbl 1163.90752
[13] Ma, C.F.; Tang, J.; Chen, X.H., A globally convergent levenberg – marquardt method for solving nonlinear complementarity problem, Appl. math. comput., 192, 370-381, (2007) · Zbl 1193.90205
[14] Ma, C.F.; Tang, J., The quadratic convergence of a smoothing levenberg – marquardt method for nonlinear complementarity problem, Appl. math. comput., 197, 566-581, (2008) · Zbl 1141.65044
[15] Ma, C.F.; Jiang, L.H., Some research on levenberg – marquardt method for the nonlinear equations, Appl. math. comput., 184, 1032-1040, (2007) · Zbl 1114.65054
[16] Qi, L.; Tseng, P., On almost smooth functions and piecewise smooth functions, Nonlinear anal. TMA, 67, 773-794, (2007) · Zbl 1125.26019
[17] Sun, D.; Qi, L., On NCP-functions, Comput. optim. appl., 13, 201-220, (1999) · Zbl 1040.90544
[18] Tseng, P., Growth behavior of a class of merit functions for the nonlinear complementarity problem, J. optim. theory appl., 1, 17-37, (1996) · Zbl 0866.90127
[19] Yamashita, N.; Fukushima, M., Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems, Math. program., 76, 469-491, (1997) · Zbl 0872.90102
[20] Zhang, J.; Chen, L., Nonmonotone levenberg – marquardt algorithms and their convergence analysis, J. optim. theory appl., 2, 393-418, (1997) · Zbl 0886.90129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.