×

zbMATH — the first resource for mathematics

Cone uniform, cone locally convex and cone metric spaces, endpoints, set-valued dynamic systems and quasi-asymptotic contractions. (English) Zbl 1203.54051
Summary: The concepts of cone pseudometrics, cone uniform spaces generated by these pseudometrics, cone pseudodistances, set-valued quasi-asymptotic contractions with respect to these pseudodistances, and cone closed maps are introduced and studied. Conditions guaranteeing the existence and uniqueness of endpoints (stationary points) of these contractions and conditions ensuring that, for each starting point, each generalized sequence of iterations of these contractions (in particular, each dynamic process) converges, and then the limit is an endpoint, are all established. Also, the concept of the cone locally convex space as a special case of the cone uniform space is introduced and examples of quasi-asymptotic contractions in cone metric spaces are constructed. The definitions, results, ideas and methods are new for set-valued dynamic systems in cone uniform, cone locally convex and cone metric spaces and even for single-valued maps in these spaces.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54E15 Uniform structures and generalizations
54C60 Set-valued maps in general topology
PDF BibTeX Cite
Full Text: DOI
References:
[1] Banach, S., Sur LES opérations dans LES ensembles abstraits et leurs applications aux équations intégrales, Fund. math., 3, 133-181, (1922) · JFM 48.0201.01
[2] Agarwal, R.P.; O’Regan, D.; Shahzad, N., Fixed point theory for generalized contractive maps of meir – keeler type, Math. nachr., 276, 3-22, (2004) · Zbl 1086.47016
[3] Arandelovic, I.A., Note on asymptotic contractions, Appl. anal. discrete. math., 1, 211-216, (2007)
[4] Arandelovic, I.A., On a fixed point theorem of kirk, J. math. anal. appl., 301, 384-385, (2005) · Zbl 1075.47031
[5] Aubin, J.P.; Ekeland, I., Applied nonlinear analysis, (1984), John Wiley and Sons, Inc.
[6] Aubin, J.P.; Frankowska, H., Set-valued analysis, (1990), Birkhäuser Boston
[7] Aubin, J.P.; Siegel, J., Fixed points and stationary points of dissipative multivalued maps, Proc. amer. math. soc., 78, 391-398, (1980) · Zbl 0446.47049
[8] Briseid, E.M., A rate of convergence for asymptotic contractions, J. math. anal. appl., 330, 364-367, (2007) · Zbl 1115.47040
[9] Briseid, E.M., Some results on kirk’s asymptotic contractions, Fixed point theory, 8, 17-27, (2007) · Zbl 1226.54045
[10] Chen, Y.-Z., Asymptotic fixed points for nonlinear contractions, Fixed point theory appl., 2005, 2, 213-217, (2005) · Zbl 1097.54039
[11] Gerhardy, P., A quantitative version of kirk’s fixed point theorem for asymptotic contractions, J. math. anal. appl., 316, 339-345, (2006) · Zbl 1094.47050
[12] Huang, L.-G.; Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, J. math. anal. appl., 332, 1468-1476, (2007) · Zbl 1118.54022
[13] Justman, M., Iterative processes with “nucleolar” restrictions, Int. J. game theory, 6, 189-212, (1978) · Zbl 0393.90109
[14] Kirk, W.A., Fixed points of asymptotic contractions, J. math. anal. appl., 277, 645-650, (2003) · Zbl 1022.47036
[15] Maschler, M.; Peleg, B., Stable sets and stable points of set-valued dynamic systems with applications to game theory, SIAM J. control optim., 14, 985-995, (1976) · Zbl 0363.90145
[16] Meir, A.; Keeler, E., A theorem on contraction mappings, J. math. anal. appl., 28, 326-329, (1969) · Zbl 0194.44904
[17] Nussbaum, R.D., Some asymptotic fixed point theorems, Trans. amer. math. soc., 171, 349-375, (1972) · Zbl 0256.47040
[18] Suzuki, T., A definitive result on asymptotic contractions, J. math. anal. appl., 335, 707-715, (2007) · Zbl 1128.54025
[19] Suzuki, T., Fixed-point theorem for asymptotic contractions of meir – keeler type in complete metric spaces, Nonlinear anal., 64, 971-978, (2006) · Zbl 1101.54047
[20] Suzuki, T., Meir – keeler contractions of integral type are still meir – keeler contractions, Inter. J. math. math. sci., (2007), Art. ID 39281, 6 pp · Zbl 1142.54019
[21] Tarafdar, E.; Vyborny, R., ()
[22] Tarafdar, E.; Yuan, G.X.-Z., Set-valued topological contractions, Appl. math. lett., 8, 79-81, (1995) · Zbl 0837.54011
[23] Włodarczyk, K.; Klim, D.; Plebaniak, R., Existence and uniqueness of endpoints of closed set-valued asymptotic contractions in metric spaces, J. math. anal. appl., 328, 46-57, (2007) · Zbl 1110.54025
[24] Włodarczyk, K.; Obczyński, C.; Wardowski, D., Set-valued dynamic systems and random iterations of set-valued weaker contractions in uniform spaces, J. math. anal. appl., 318, 772-780, (2006) · Zbl 1095.54019
[25] Włodarczyk, K.; Plebaniak, R.; Obczyński, C., Endpoints of set-valued dynamical systems of asymptotic contractions of meir – keeler type and strict contractions in uniform spaces, Nonlinear anal., 67, 1668-1679, (2007) · Zbl 1124.54005
[26] Włodarczyk, K.; Plebaniak, R.; Obczyński, C., The uniqueness of endpoints for set-valued dynamical systems of contractions of meir – keeler type in uniform spaces, Nonlinear anal., 67, 3373-3383, (2007) · Zbl 1202.54016
[27] Włodarczyk, K.; Plebaniak, R., Endpoint theory for set-valued nonlinear asymptotic contractions with respect to generalized pseudodistances in uniform spaces, J. math. anal. appl., 339, 344-358, (2008) · Zbl 1148.54021
[28] Włodarczyk, K.; Plebaniak, R., Generalized contractions of meir – keeler type, endpoints, set-valued dynamical systems and generalized pseudometrics in uniform spaces, Nonlinear anal., 68, 3445-3453, (2008) · Zbl 1158.54005
[29] Yuan, G.X.-Z., KKM theory and applications in nonlinear analysis, (1999), Marcel Dekker New York
[30] Berge, C., Topological spaces, (1963), Oliver & Boyd Edinburgh · Zbl 0114.38602
[31] Klein, E.; Thompson, A.C., Theory of correspondences, (1984), John Wiley & Sons, Inc. New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.