Rejoinder to the comments on: Missing data methods in longitudinal studies: a review. (English) Zbl 1203.62214

Refers to the comments Zbl 1203.62205, Zbl 1203.62196, Zbl 1203.62186, Zbl 1203.62191, Zbl 1203.62195, to the authors’ paper ibid. 18, No. 1, 1–43 (2009; Zbl 1203.62193).


62P12 Applications of statistics to environmental and related topics
62J99 Linear inference, regression
Full Text: DOI


[1] Bang H, Robins JM (2005) Doubly robust estimation in missing data and causal inference models. Biometrics 61(4):962–973 · Zbl 1087.62121
[2] Chen M-H, Ibrahim JG, Shao Q-M (2004) Propriety of the posterior distribution and existence of the maximum likelihood estimator for regression models with covariates missing at random. J Am Stat Assoc 99:421–438 · Zbl 1117.62308
[3] Chen M-H, Ibrahim JG, Shao Q-M (2006) Posterior propriety and computation for the Cox regression model with applications to missing covariates. Biometrika 93:791–807 · Zbl 1436.62476
[4] Chen M-H, Ibrahim JG, Shao Q-M (2009) Model identifiability for the Cox regression model with applications to missing covariates. J Multivar Anal (in press)
[5] Claeskens G, Consentino F (2008) Variable selection with incomplete covariate data. Biometrics 64:1062–1069 · Zbl 1152.62388
[6] Cochran WG (1977) Sampling techniques. Wiley, New York
[7] Creemers A, Hens N, Aerts M, Molenberghs G, Verbeke G, Kenward MG (2009a) Shared-parameter models and missingness at random (submitted for publication)
[8] Creemers A, Hens N, Aerts M, Molenberghs G, Verbeke G, Kenward MG (2009b) A sensitivity analysis for shared-parameter models (submitted for publication) · Zbl 1207.62199
[9] Ibrahim JG, Zhu H, Tang N (2008) Model selection criteria for missing data problems using the EM algorithm. J Am Stat Assoc 103:1648–1658 · Zbl 1286.62082
[10] Jansen I, Molenberghs G (2009) Pattern-mixture models for categorical outcomes with non-monotone missingness (submitted for publication) · Zbl 1432.62363
[11] Jansen I, Hens N, Molenberghs G, Aerts M, Verbeke G, Kenward MG (2006) The nature of sensitivity in missing not at random models. Comput Stat Data Anal 50:830–858 · Zbl 1431.62497
[12] Kenward MG, Goetghebeur EJT, Molenberghs G (2001) Sensitivity analysis of incomplete categorical data. Stat Model 1:31–48 · Zbl 0983.62078
[13] Lipsitz SR, Ibrahim JG, Zhao L (1999) A new weighted estimating equation for missing covariate data with properties similar to maximum likelihood. J Am Stat Assoc 94:1147–1160 · Zbl 1072.62532
[14] Molenberghs G, Kenward MG (2007) Missing data in clinical studies. Wiley, Chichester
[15] Molenberghs G, Michiels B, Kenward MG, Diggle PJ (1998) Monotone missing data and pattern-mixture models. Stat Neerl 52:153–161 · Zbl 0946.62034
[16] Molenberghs G, Beunckens C, Sotto C, Kenward MG (2008) Every missing not at random model has got a missing at random counterpart with equal fit. J R Stat Soc Ser B 70:371–388 · Zbl 1148.62046
[17] Robins JM, Rotnitzky A, Zhao LP (1995) Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J Am Stat Assoc 90(429):106–121 · Zbl 0818.62042
[18] Rotnitzky A (2009) Inverse probability weighted methods. In: Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds) Longitudinal data analysis. CRC/Chapman & Hall, Boca Raton, pp 453–476
[19] Scharfstein DO, Rotnitzky A, Robins JM (1999) Adjusting for nonignorable drop-out using semiparametric nonresponse models. J Am Stat Assoc 94:1096–1120 (with Rejoinder, 1135–1146) · Zbl 1072.62644
[20] Shi X, Zhu H, Ibrahim JG (2009) Local influence for generalized linear models with missing covariates. Biometrics (in press) · Zbl 1180.62103
[21] Sotto C, Beunckens C, Molenberghs G, Jansen I, Verbeke G (2009) Marginalizing pattern-mixture models for categorical data subject to monotone missingness. Metrika 69(2–3):305–336 · Zbl 1433.62041
[22] Van der Laan MJ, Robins JM (2003) Unified methods for censored longitudinal data and causality. Springer, New York · Zbl 1013.62034
[23] Verbeke G, Molenberghs G (2009) Arbitrariness of models for augmented and coarse data, with emphasis on incomplete-data and random-effects models. Stat Model (in press) · Zbl 1162.62070
[24] Verbeke G, Molenberghs G, Thijs H, Lesaffre E, Kenward MG (2001) Sensitivity analysis for non-random dropout: a local influence approach. Biometrics 57:7–14 · Zbl 1209.62170
[25] Verbeke G, Molenberghs G, Beunckens C (2008) Formal and informal model selection with incomplete data. Stat Sci 23(2):201–218 · Zbl 1327.62027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.