zbMATH — the first resource for mathematics

Numerical simulation of fluid-structure interaction using modified ghost fluid method and Naviers equations. (English) Zbl 1203.65142
Summary: We deal with the 1D compressible fluid coupled with elastic solid in an Eulerian-Lagrangian system. To facilitate the analysis, the Naviers equation for elastic solid is cast into a \(2\times 2\) system similar to the Euler equation but in Lagrangian coordinate. The modified Ghost Fluid Method is employed to treat the fluid-elastic solid coupling, where an Eulerian-Lagrangian Riemann problem is defined and a nonlinear characteristic from the fluid and a Riemann invariant from the solid are used to predict and define the ghost fluid states. Theoretical analysis shows that the present approach is accurate in the sense of approximating the solution of the Riemann problem at the interface. Numerical validation of this approach is also accomplished by extensive comparison to 1D problems (both water-solid and gas-solid) with their respective analytical solutions.

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S99 Numerical and other methods in solid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI
[1] Karni, S.: Multi-component flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31–43 (1994) · Zbl 0811.76044
[2] Cocchi, J.-P., Saurel, R.: A Riemann problem based method for the resolution of compressible multimaterial flows. J. Comput. Phys. 137, 265–298 (1997) · Zbl 0934.76055
[3] Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost fluid method). J. Comput. Phys. 152, 457–492 (1999) · Zbl 0957.76052
[4] Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001) · Zbl 1033.76029
[5] Liu, T.G., Khoo, B.C., Yeo, K.S.: The simulation of compressible multi-medium flow. Part I: a new methodology with test applications to 1D gas-gas and gas-water cases. Comput. Fluids 30(3), 291–314 (2001) · Zbl 1052.76046
[6] Glimm, J., Xia, L., Liu, Y., Zhao, N.: Conservative front tracking and level set algorithms. Proc. Natl. Acad. Sci. USA 98, 14198–14201 (2001) · Zbl 1005.65091
[7] Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G.: Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213, 500–529 (2006) · Zbl 1136.76396
[8] Fedkiw, R.P., Aslam, T., Xu, S.: The ghost fluid method for deflagration and detonation discontinuities. J. Comput. Phys. 154, 393–427 (1999) · Zbl 0955.76071
[9] Caiden, R., Fedkiw, R.P., Anderson, C.: A numerical method for two-phase flow consisting of separate compressible and incompressible regions. J. Comput. Phys. 166, 1–27 (2001) · Zbl 0990.76065
[10] Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003) · Zbl 1076.76592
[11] Aslam, T.D.: A level set algorithm for tracking discontinuities in hyperbolic conservation laws II: systems of equations. J. Sci. Comput. 19, 37–62 (2003) · Zbl 1081.65083
[12] Wang, C.W., Liu, T.G., Khoo, B.C.: A real-ghost fluid method for the simulation of multi-medium compressible flow. SIAM Sci. Comput. 28, 278–302 (2006) · Zbl 1114.35119
[13] Miller, G.H., Puckett, E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996) · Zbl 0861.65117
[14] Tang, H.S., Sotiropoulos, F.: A second-order Godunov method for wave problems in coupled solid-water-gas systems. J. Comput. Phys. 151, 790–815 (1999) · Zbl 0945.76061
[15] Heys, J.J., Manteuffel, T.A., McCormick, S.F., Ruge, J.W.: First-order system least squares (FOSLS) for coupled fluid-elastic problems. J. Comput. Phys. 195, 560–575 (2004) · Zbl 1115.74320
[16] Udaykumar, H.S., Tran, L., Belk, D.M., Vanden, K.J.: An Eulerian method for computation of multimaterial impact with ENO shock-capturing and sharp interfaces. J. Comput. Phys. 186, 136–177 (2003) · Zbl 1047.76558
[17] Souli, M., Mahmadi, K., Aquelet, N.: ALE and fluid structure interface. Mater. Sci. Forum 465–466, 143–149 (2004)
[18] Aivazis, M., Goddard, W.A., Meiron, D., Ortiz, M., Pool, J., Shepherd, J.: A virtual, test facility for simulating the dynamic response of materials. Comput. Sci. Eng. 2, 42–53 (2000) · Zbl 05091800
[19] Fedkiw, R.P.: Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the Ghost fluid method. J. Comput. Phys. 175, 200–224 (2002) · Zbl 1039.76050
[20] Arienti, M., Hung, P., Morano, E., Shepherd, J.: A level set approach to Eulerian-Lagrangian coupling. J. Comput. Phys. 185, 213–251 (2003) · Zbl 1047.76567
[21] Liu, T.G., Khoo, B.C., Wang, C.W.: The Ghost fluid method for compressible gas-water simulation. J. Comput. Phys. 204, 193–221 (2005) · Zbl 1190.76160
[22] Liu, T.G., Khoo, B.C., Xie, W.F.: The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation. Commun. Comput. Phys. 1(5), 898–919 (2006) · Zbl 1115.76389
[23] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, New York (1997) · Zbl 0888.76001
[24] Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981) · Zbl 0474.65066
[25] Chung, T.J.: Applied Continuum Mechanics. Cambridge University Press, Cambridge (1996) · Zbl 0884.73001
[26] Lin, X.: Numerical Computation of Stress Waves in Solid. Akademie, Berlin (1997)
[27] Liu, T.G., Xie, W.F., Khoo, B.C.: The modified Ghost fluid method for coupling of fluid and structure constituted with hydro-elasto-plastic equation of state. SIAM J. Sci. Comput. (2007, in press) · Zbl 1173.35078
[28] Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988) · Zbl 0659.65132
[29] Liu, T.G., Xie, W.F., Khoo, B.C.: Ghost fluid method applied to compressible multi-phase flows. Mod. Phys. Lett. B 19, 1475–1478 (2005) · Zbl 1137.76825
[30] Liu, T.G., Khoo, B.C.: The accuracy of the modified ghost fluid method for gas-gas Riemann problem. Appl. Numer. Math. 57, 721–733 (2007) · Zbl 1190.76155
[31] Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999) · Zbl 0919.65074
[32] Davis, J.R.: Concise Metals Engineering Data Book. ASM International (1997)
[33] Tang, H.S., Huang, D.: A second-order accurate capturing scheme for 1D inviscid flows of gas and water with vacuum zones. J. Comput. Phys. 128, 301–318 (1996) · Zbl 0861.76055
[34] Xie, W.F., Liu, T.G., Khoo, B.C.: Application of a one-fluid model for large scale homogeneous unsteady cavitation: the modified Schmidt’s model. Comput. Fluids 35, 1177–1192 (2006) · Zbl 1177.76437
[35] Liu, T.G., Khoo, B.C., Xie, W.F.: Isentropic one-fluid modelling of unsteady cavitating flow. J. Comput. Phys. 201, 80–108 (2004) · Zbl 1153.76435
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.