Melnikov, Alexander G. Enumerations and completely decomposable torsion-free abelian groups. (English) Zbl 1204.03039 Theory Comput. Syst. 45, No. 4, 897-916 (2009). The main results of this paper are the following:For any family \(R\) of finite sets there exists a completely decomposable torsion-free abelian group \(G_{R}\) of infinite rank such that \(G_{R}\) has an \(X\)-computable copy if and only if \(R\) has a \(\Sigma_{2}^{X}\)-computable enumeration (Theorem 4).There exists a completely decomposable torsion-free abelian group \(G\) of infinite rank such that \(G\) has an \(X\)-decomposable copy if and only if \(X^{\prime}>_{T}0^{\prime}\) (Theorem 5). As a consequence of these results, it is proved that there exists a completely decomposable torsion-free abelian group \(G\) of infinite rank with no jump degree. Reviewer: Simion Sorin Breaz (Cluj-Napoca) Cited in 7 Documents MSC: 03C57 Computable structure theory, computable model theory 03D45 Theory of numerations, effectively presented structures 20K20 Torsion-free groups, infinite rank Keywords:computable models; torsion-free abelian groups; degree spectra PDF BibTeX XML Cite \textit{A. G. Melnikov}, Theory Comput. Syst. 45, No. 4, 897--916 (2009; Zbl 1204.03039) Full Text: DOI References: [1] Baer, R.: Abelian groups without elements of finite order. Duke Math. J. 3, 68–122 (1937) · Zbl 0016.20303 · doi:10.1215/S0012-7094-37-00308-9 [2] Coles, R., Downey, R., Slaman, T.: Every set has a least jump enumeration. J. Lond. Math. Soc. (2) 62(3), 641–649 · Zbl 1023.03036 [3] Downey, R.: On presentations of algebraic structures. In: Sorbi (ed.) Complexity, Logic and Recursion Theory, pp. 157–205. Marcel Dekker, New York (1997) · Zbl 0915.03039 [4] Ershov, Y., Goncharov, S.: Constructive Models. Nauchnaya kniga, Novosibirsk (1999) [5] Fuchs, L.: Infinite Abelian Groups, vol. II. Academic Press, New York (1973) · Zbl 0257.20035 [6] Khisamiev, N.: Constructive Abelian Groups. Handbook of Recursive Mathematics, vol. 139. Elsevier, Amsterdam (1998) · Zbl 0940.03044 [7] Mal’tsev, A.I.: On recursive Abelian groups. Soviet Math. Dokl. 3 [8] Miller, R.: The \(\Delta\) 2 0 -spectrum of a linear order. J. Symb. Log. 66, 470–486 (2001) · Zbl 0992.03050 · doi:10.2307/2695025 [9] Selman, A.: Arithmetical reducibilities I. Z. Math. Log. Grundlagen Math. 17, 335–370 (1971) · Zbl 0229.02037 · doi:10.1002/malq.19710170139 [10] Slaman, T.: Relative to any non-recursive set. Proc. Am. Math. Soc. 126, 2117–2122 (1998) · Zbl 0894.03017 · doi:10.1090/S0002-9939-98-04307-X [11] Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin/Heidelberg (1987) · Zbl 0667.03030 [12] Wehner, S.: Enumerations, countable structures and Turing degrees. Proc. Am. Math. Soc. 126, 2131–2139 (1998) · Zbl 0906.03044 · doi:10.1090/S0002-9939-98-04314-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.