zbMATH — the first resource for mathematics

Normalisation holomorphe de structures de Poisson. (English) Zbl 1204.53072
Using [L. Stolovitch, Ergodic Theory and Dyn. Syst. 24, No. 5, 1833–1863 (2004; Zbl 1090.53066)] the author gives sufficient conditions for the holomorphic normalizability of Poisson structures (PS) with vanishing linear part in neighborhood of its singular point \(0 \in \mathbb{C}^n\). These conditions consist in a Diophantine condition on a Lie algebra associated to quadratic part of PS and some restrictions on the normal form.

53D17 Poisson manifolds; Poisson groupoids and algebroids
34A26 Geometric methods in ordinary differential equations
Full Text: DOI
[1] DOI: 10.1007/BF02698742 · Zbl 0997.32024 · doi:10.1007/BF02698742
[2] Dufour, Poisson Structures and their Normal Forms (2005) · Zbl 1082.53078
[3] DOI: 10.1016/S0393-0440(97)00039-9 · Zbl 0958.37021 · doi:10.1016/S0393-0440(97)00039-9
[4] Dufour, C. R. Acad. Sci. Paris Sér. I 312 pp 137– (1991)
[5] DOI: 10.1017/S0143385703000804 · Zbl 1090.53066 · doi:10.1017/S0143385703000804
[6] DOI: 10.2307/2007086 · Zbl 0553.58004 · doi:10.2307/2007086
[7] Bruno, Trans. Moscow Soc. 25 pp 131– (1971)
[8] Arnol’d, Mathematical Methods of Classical Mechanics (1989) · doi:10.1007/978-1-4757-2063-1
[9] Weinstein, J. Differential Geom. 18 pp 523– (1983)
[10] DOI: 10.2307/1971210 · Zbl 0592.58025 · doi:10.2307/1971210
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.