×

zbMATH — the first resource for mathematics

Adaptive synchronization of chaotic Cohen-Grossberg neural networks with mixed time delays. (Adaptive synchronization of chaotic Cohen-Crossberg neural networks with mixed time delays.) (English) Zbl 1204.93064
Summary: The problem of adaptive synchronization is investigated for a class of Cohen-Crossberg neural networks with mixed time delays. Based on a Lyapunov-Krasovskii functional and the invariant principle of function differential equations as well as the adaptive control and linear feedback with update law, a linear matrix inequality approach is developed to derive some novel sufficient conditions achieving synchronization of the two coupled networks with mixed time delays. In particular, the mixed time delays in this paper synchronously consist of constant delays, time-varying delays, and distributed delays, which are more general than those discussed in the previous literature. Therefore, the results obtained in this paper comprise and generalize those given in the previous literature. A numerical example and its simulation are provided to show the effectiveness of the theoretical results.

MSC:
93C23 Control/observation systems governed by functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
34C28 Complex behavior and chaotic systems of ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N25 Dynamical systems in biology
92C20 Neural biology
93D21 Adaptive or robust stabilization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agiza, H.N., Yassen, M.T.: Synchronization of Rossler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278(4), 191–197 (2001) · Zbl 0972.37019
[2] Boyd, S., Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994) · Zbl 0816.93004
[3] Cao, J., Lu, J.: Adaptive synchronization of neural networks with or without time-varying delays. Chaos 16(1), 013133 (2006) · Zbl 1144.37331
[4] Carroll, T.L., Pecora, L.M.: Synchronization chaotic circuits. IEEE Trans. Circuit Syst. 38(4), 453–456 (1991)
[5] Chen, G., Zhou, J., Liu, Z.: Global synchronization of coupled delayed neural networks and application to chaotic CNN models. Int. J. Bifurc. Chaos 14(7), 2229–2240 (2004) · Zbl 1077.37506
[6] Cheng, C., Liao, T., Hwang, C.: Exponential synchronization of a class of chaotic neural networks. Chaos Solitons Fractals 24(1), 197–206 (2005) · Zbl 1060.93519
[7] Cheng, C., Liao, T., Yan, J., Hwang, C.: Exponential synchronization of a class of neural networks with time-varying delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 36(1), 209–215 (2006)
[8] Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35(1), 1273–1290 (1988)
[9] Cichocki, A., Unbehauen, R.: Neural Networks for Optimalition and Signal Processing. Wiley, New York (1993) · Zbl 0824.68101
[10] Cui, B., Lou, X.: Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control. Chaos Solitons Fractals 39(1), 288–294 (2009) · Zbl 1197.93135
[11] Fotsin, H.B., Daafouz, J.: Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification. Phys. Lett. A 339(3–5), 304–315 (2005) · Zbl 1145.93313
[12] Fotsin, H.B., Woafo, P.: Adaptive synchronization of a modified and uncertain chaotic Van der Pol–Duffing oscillator based on parameter identification. Chaos Solitons Fractals 24(5), 1363–1371 (2005) · Zbl 1091.70010
[13] Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proceedings of 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2805–2810 (2000)
[14] He, W., Cao, J.: Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters. Phys. Lett. A 372, 408–416 (2008) · Zbl 1217.92011
[15] He, G., Cao, Z., Zhu, P., Ogura, H.: Controlling chaos in a chaotic neural network. Neural Netw. 16(8), 1195–1200 (2003) · Zbl 02022381
[16] Heagy, J.F., Carroll, T.L., Pecora, L.M.: Experimental and numerical evidence for riddled basins in coupled chaotic systems. Phys. Rev. Lett. 73, 3528–3531 (1994)
[17] Huang, D.: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E 71, 037203 (2005)
[18] Huang, L., Feng, R., Wang, M.: Synchronization of chaotic systems via nonlinear control. Phys. Lett. A 320(4), 271–275 (2004) · Zbl 1065.93028
[19] Joya, G., Atencia, M.A., Sandoval, F.: Hopfield neural networks for optimization: study of the different dynamics. Neurocomputing 43(1–4), 219–237 (2002) · Zbl 1016.68076
[20] Kakmeni, F., Bowong, S., Tchawoua, C.: Nonlinear adaptive synchronization of a class of chaotic systems. Phys. Lett. A 355, 47–54 (2006) · Zbl 1130.93404
[21] Lei, Y., Xu, W., Zheng, H.: Synchronization of two chaotic nonlinear gyros using active control. Phys. Lett. A 343(1–3), 153–158 (2005) · Zbl 1194.34090
[22] Li, W.J., Lee, T.: Hopfield neural networks for affine invariant matching. IEEE Trans. Neural Netw. 12(6), 1400–1410 (2001)
[23] Li, C., Liao, X., Zhang, X.: Impulsive stabilization and synchronization of a class of chaotic delay systems. Chaos 15, 023104 (2005) · Zbl 1080.37034
[24] Lu, J., Cao, J.: Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. Chaos 15, 043901 (2005) · Zbl 1144.37378
[25] Mackevicius, V.: A note on synchronization of diffusion. Math. Comput. Simul. 52, 491–495 (2000) · Zbl 04561139
[26] Mahboobi, S.H., Shahrokhi, M., Pishkenari, H.N.: Observer-based control design for three well-known chaotic systems. Chaos Solitons Fractals 29(2), 381–392 (2006) · Zbl 1147.93390
[27] Park, J.H.: Synchronization of Genesio chaotic system via backstepping approach. Chaos Solitons Fractals 27(5), 1369–1375 (2006) · Zbl 1091.93028
[28] Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) · Zbl 0938.37019
[29] Salarieh, H., Alasty, A.: Adaptive synchronization of two chaotic systems with stochastic unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 14(2), 508–519 (2009) · Zbl 1221.93246
[30] Sun, Y., Cao, J., Wang, Z.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks. Neurocomputing 70, 2477–2485 (2007)
[31] Wang, C., Su, J.: A new adaptive variable structure control for chaotic synchronization and secure communication. Chaos Solitons Fractals 20(5), 967–977 (2004) · Zbl 1050.93036
[32] Wang, K., Teng, Z., Jiang, H.: Adaptive synchronization of neural networks with time-varying delay and distributed delay. Physica A 387(2–3), 631–642 (2008)
[33] Young, S., Scott, P., Nasrabadi, N.: Object recognition using multilayer Hopfield neural network. IEEE Trans. Image Process. 6(3), 357–372 (1997)
[34] Yu, W., Cao, J.: Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification. Phys. Lett. A 375(2), 467–482 (2007)
[35] Zhou, J., Chen, T., Xiang, L.: Robust synchronization of delayed neural networks based on adaptive control and parameters identification. Chaos Solitons Fractals 27(4), 905–913 (2006) · Zbl 1091.93032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.