×

Application of the exp-function method for solving nonlinear reaction-diffusion equations arising in mathematical biology. (English) Zbl 1205.35325

Summary: We consider nonlinear reaction-diffusion equations arising in mathematical biology. We use the exp-function method in order to obtain conventional solitons and periodic solutions. The proposed scheme can be applied to a wide class of nonlinear equations.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92B05 General biology and biomathematics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Murray, J.D., Nonlinear differential equation models in biology, (1977), Clarendon Press Oxford · Zbl 0379.92001
[2] Murray, J.D., Mathematical biology, (1989), Springer Berlin · Zbl 0682.92001
[3] Fife, P.C., Mathematical aspects of reacting and diffusing systems, (1979), Springer Berlin · Zbl 0403.92004
[4] Fisher, R.A., The wave of advance of advantageous genes, Ann. eugenics, 7, 353-369, (1937) · JFM 63.1111.04
[5] Cherniha, R.M., New ansatze and exact solutions for nonlinear reaction – diffusion equations arising in mathematical biology, Symmetry nonlinear math. phys., 1, 138-146, (1997) · Zbl 0954.35038
[6] He, J.H.; Wu, X.H., Exp-function method for nonlinear wave equations, Chaos solitons fractals, 30, 3, 700-708, (2006) · Zbl 1141.35448
[7] Wu, X.H.; He, J.H., Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method, Comput. math. appl., 54, 966-986, (2007) · Zbl 1143.35360
[8] Zhu, S., Discrete \((2 + 1)\)-dimensional Toda lattice equation via exp-function method, Phys. lett. A, 372, 654-657, (2008) · Zbl 1217.37064
[9] Zhang, S., Exp-function method for solving maccari’s system, Phys. lett. A, 371, 65-71, (2007) · Zbl 1209.65103
[10] He, J.H.; Abdou, M.A., New periodic solutions for nonlinear evolution equations using exp-function method, Chaos solitons fractals, 34, 1421-1429, (2007) · Zbl 1152.35441
[11] Marinakis, Vangelis, Z. naturforsch., 63a, 653-656, (2008)
[12] Dai, C.Q.; Zhang, J.F., Int. J. nonlinear sci. numer. simul., 10, 675, (2009)
[13] Dai, C.Q.; Zhang, J.F., Europhys. lett., 86, 40006, (2009)
[14] Zhu, S.D., Exp-function method for the hybrid – lattice system, Int. J. nonlinear sci. numer. simul., 8, 461-464, (2007)
[15] Zhu, S.D., Exp-function method for the discrete \(\operatorname{mK} \operatorname{d} \operatorname{V}\) lattice, Int. J. nonlinear sci. numer. simul., 8, 465-468, (2007)
[16] Zhang, S., Application of the exp-function method to Riccati equation and new exact solutions with three arbitrary functions of broer – kaup – kupershmidt equations, Phys. lett. A, 372, 1873-1880, (2008) · Zbl 1220.37071
[17] El-wakil, S.A.; Madkour, M.A.; Abdou, M.A., Application of the exp-function method for nonlinear evolution equations with variable coefficients, Phys. lett. A, 369, 62-69, (2007) · Zbl 1209.81097
[18] Kudryashov, N.A., Seven common errors in finding exact solutions of nonlinear differential equations, Commun. nonlinear sci. numer. simul., 14, 9-10, 3507-3529, (2009) · Zbl 1221.35342
[19] Kudryashov, N.A., On “new travelling wave solutions” of the \(\operatorname{K} \operatorname{d} \operatorname{V}\) and the \(\operatorname{K} \operatorname{d} \operatorname{V}\)-burgers equations, Commun. nonlinear sci. numer. simul., 14, 5, 1891-1900, (2009)
[20] Kudryashov, N.A.; Loguinova, N.B., Be careful with the exp-function method, Commun. nonlinear sci. numer. simul., 14, 5, (2009), 1881-1189 · Zbl 1221.35344
[21] Wazzan, L., A modified tanh – coth method for solving the \(K \operatorname{d} V\) and the \(K \operatorname{d} V\)-burgers equations, Commun. nonlinear sci. numer. simul., 14, 443-450, (2009) · Zbl 1221.35376
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.