×

zbMATH — the first resource for mathematics

Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet. (English) Zbl 1205.80012
Summary: We analyze the effects of partial slip on steady boundary layer stagnation-point flow of an incompressible fluid and heat transfer towards a shrinking sheet. Similarity transformation technique is adopted to obtain the self-similar ordinary differential equations and then the self-similar equations are solved numerically using shooting method. This investigation explores the conditions of the non-existence, existence, uniqueness and duality of the solutions of self-similar equations numerically. Due to the increase of slip parameter \((\delta )\), the range of velocity ratio parameter \((c/a)\) where the similarity solution exists, increases.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Crane, L. J.: Flow past a stretching plate, Z. angew. Math. phys. 21, 645-647 (1970)
[2] Gupta, P. S.; Gupta, A. S.: Heat and mass transfer on a stretching sheet with suction and blowing, Can. J. Chem. eng. 55, 744-746 (1977)
[3] Chen, C. K.; Char, M. I.: Heat transfer of a continuous stretching surface with suction or blowing, J. math. Anal. appl. 135, 568-580 (1988) · Zbl 0652.76062
[4] Pavlov, K. B.: Magnetohydrodynamic flow of an incompressible viscous fluid caused by the deformation of a plane surface, Magnitnaya gidrodinamika 10, 146-148 (1974)
[5] Hiemenz, K.: Die grenzschicht an einem in den gleichformingen flussigkeits-strom einge-tauchten graden kreiszylinder, Dinglers polytech. J. 326, 321-324 (1911)
[6] Chiam, T. C.: Stagnation-point flow towards a stretching plate, J. phys. Soc. jpn. 63, 2443-2444 (1994)
[7] Mahapatra, T. R.; Gupta, A. S.: Magnetohydrodynamic stagnation-point flow towards a stretching sheet, Acta mechanica 152, 191-196 (2001) · Zbl 0992.76099
[8] Mahapatra, T. R.; Gupta, A. S.: Heat transfer in stagnation-point flow towards a stretching sheet, Heat mass transfer 38, 517-521 (2002)
[9] Ishak, A.; Nazar, R.; Pop, I.: Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet, Meccanica 41, 509-518 (2006) · Zbl 1163.76412
[10] Layek, G. C.; Mukhopadhyay, S.; Samad, Sk.A.: Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing, Int. commun. Heat mass transfer 34, 347-356 (2007)
[11] Nadeem, S.; Hussain, A.; Khan, M.: HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet, Commun. nonlinear sci. Numer. simul. 15, 475-481 (2010) · Zbl 1221.65282
[12] Wang, C. Y.: Liquid film on an unsteady stretching sheet, Q. appl. Math. 48, No. 4, 601-610 (1990) · Zbl 0714.76036
[13] Miklavcic, M.; Wang, C. Y.: Viscous flow due a shrinking sheet, Q. appl. Math. 64, 283-290 (2006) · Zbl 1169.76018
[14] Hayat, T.; Javed, T.; Sajid, M.: Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface, Phys. lett. A 372, 3264-3273 (2008) · Zbl 1220.76011
[15] Fang, T.; Zhang, J.: Closed-form exact solution of MHD viscous flow over a shrinking sheet, Commun. nonlinear sci. Numer. simul. 14, 2853-2857 (2009) · Zbl 1221.76142
[16] Noor, N. F. M.; Kechil, S. A.; Hashim, I.: Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet, Commun. nonlinear sci. Numer. simul. 15, 144-148 (2010) · Zbl 1221.76154
[17] Fang, T.; Zhang, J.: Thermal boundary layers over a shrinking sheet: an analytic solution, Acta mechanica 209, 325-343 (2010) · Zbl 1381.76056
[18] Wang, C. Y.: Stagnation flow towards a shrinking sheet, Int. J. Nonlinear mech. 43, 377-382 (2008)
[19] Beavers, G. S.; Joseph, D. D.: Boundary condition at a naturally permeable wall, J. fluid mech. 30, 197-207 (1967)
[20] Andersson, H. I.: Slip flow past a stretching surface, Acta mechanica 158, 121-125 (2002) · Zbl 1013.76020
[21] Wang, C. Y.: Flow due to a stretching boundary with partial slip – an exact solution of the Navier – Stokes equations, Chem. eng. Sci. 57, 3745-3747 (2002)
[22] Ariel, P. D.; Hayat, T.; Asghar, S.: The flow of an elastico-viscous fluid past a stretching sheet with partial slip, Acta mechanica 187, 29-35 (2006) · Zbl 1103.76010
[23] Ariel, P. D.: Two dimensional stagnation point flow of an elastico-viscous fluid with partial slip, Z. angew. Math. mech. 88, 320-324 (2008) · Zbl 1135.76004
[24] Abbas, Z.; Wang, Y.; Hayat, T.; Oberlack, M.: Slip effects and heat transfer analysis in a viscous fluid over an oscillatory stretching surface, Int. J. Numer. methods fluids 59, 443-458 (2009) · Zbl 1154.76017
[25] Fang, T.; Zhang, J.; Yao, S.: Slip MHD viscous flow over a stretching sheet – an exact solution, Commun. nonlinear sci. Numer. simul. 14, 3731-3737 (2009)
[26] Fang, T.; Yao, S.; Zhang, J.; Aziz, A.: Viscous flow over a shrinking sheet with a second order slip flow model, Commun. nonlinear sci. Numer. simul. 15, 1831-1842 (2010) · Zbl 1222.76028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.