×

Heisenberg operators, invariant domains and Heisenberg equations of motion. (English) Zbl 1205.81083


MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81S05 Commutation relations and statistics as related to quantum mechanics (general)
47N50 Applications of operator theory in the physical sciences
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1007/BF01200389 · Zbl 0810.47019
[2] Cycon H. L., Schrödinger Operators (1987)
[3] DOI: 10.1007/s002200050758 · Zbl 0961.81009
[4] DOI: 10.1007/978-3-642-66282-9
[5] DOI: 10.1007/BF01457956 · Zbl 0001.24703
[6] DOI: 10.1016/0022-1236(90)90101-P · Zbl 0704.47020
[7] Reed M., Methods of Modern Mathematical Physics I: Functional Analysis (1972) · Zbl 0242.46001
[8] Reed M., Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness (1975) · Zbl 0308.47002
[9] DOI: 10.1007/978-3-662-02753-0
[10] Vasilescu F.-H., Rev. Roumaine Math. Pures Appl. 28 pp 77–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.