×

zbMATH — the first resource for mathematics

Robust adaptive fuzzy control of chaos in the permanent magnet synchronous motor. (English) Zbl 1205.93092
Summary: An adaptive fuzzy control method is developed to control chaos in the Permanent Magnet Synchronous Motor (PMSM) drive system via backstepping. Fuzzy logic systems are used to approximate unknown nonlinearities, and an adaptive backstepping technique is employed to construct controllers. The proposed controller can suppress the chaos of PMSM and track the reference signal successfully. The simulation results illustrate its effectiveness.

MSC:
93C42 Fuzzy control/observation systems
93C95 Application models in control theory
93C40 Adaptive control/observation systems
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Z. Li, J. B. Park, Y. H. Joo, B. Zhang, and G. Chen, “Bifurcations and chaos in a permanent-magnet synchronous motor,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 3, pp. 383-387, 2002. · doi:10.1109/81.989176
[2] U. E. Vincent and A. Ucar, “Synchronization and anti-synchronization of chaos in permanent magnet reluctance machine,” Far East Journal of Dynamical Systems, vol. 9, no. 2, pp. 211-221, 2007. · Zbl 1220.37082
[3] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical Review Letters, vol. 64, no. 11, pp. 1196-1199, 1990. · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[4] H. Ren and D. Liu, “Nonlinear feedback control of chaos in permanent magnet synchronous motor,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 1, pp. 45-50, 2006. · doi:10.1109/TCSII.2005.854592
[5] Y. Gao and K. T. Chau, “Chaotification of permanent-magnet synchronous motor drives using time-delay feedback,” in Proceedings of the 28th Annual Conference of the IEEE Industrial Electronics Society, vol. 2, pp. 762-766, November 2002.
[6] H. Ren, D. Liu, and J. Li, “Delay feedback control of chaos in permanent magnet synchronousmotor,” in Proceedings of the China Society Electronic Engineering Conference, pp. 175-178, 2003.
[7] H. Ren and D. Liu, “Nonlinear feedback control of chaos in permanent magnet synchronous motor,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 1, pp. 45-50, 2006. · doi:10.1109/TCSII.2005.854592
[8] A. M. Harb, “Nonlinear chaos control in a permanent magnet reluctance machine,” Chaos, Solitons and Fractals, vol. 19, no. 5, pp. 1217-1224, 2004. · Zbl 1072.78512 · doi:10.1016/S0960-0779(03)00311-4
[9] D. Q. Wei, X. S. Luo, B. H. Wang, and J. Q. Fang, “Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor,” Physics Letters A, vol. 363, no. 1-2, pp. 71-77, 2007. · doi:10.1016/j.physleta.2006.10.074
[10] Z. Li, G. Chen, S. Shi, and C. Han, “Robust adaptive tracking control for a class of uncertain chaotic systems,” Physics Letters A, vol. 310, no. 1, pp. 40-43, 2003. · Zbl 1011.37055 · doi:10.1016/S0375-9601(03)00115-4
[11] M. Krstic, I. Kanellakopoulus, and P. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, New York, NY, USA, 1995.
[12] A. A. Zaher and M. A. Zohdy, “Robust control of biped robots,” in Proceedings of the American Control Conference (ACC ’00), pp. 1473-1477, Chicago, Ill, USA, June 2000.
[13] A. Harb and A. Zaher, “Nonlinear recursive chaos control,” in Proceedings of the American Control Conference (ACC ’00), Anchorage, Alaska, USA, 2002. · Zbl 1062.93514
[14] A. Harb and W. Ahmad, “Control of chaotic oscillators using a nonlinear recursive back-stepping controller,” in Proceedings of the IASTED Conference on Applied Simulations and Modeling, pp. 451-453, Crete, Greece, 2002.
[15] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, no. 3, pp. 338-353, 1965. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[16] Y. Zheng and G. Chen, “Fuzzy impulsive control of chaotic systems based on TS fuzzy model,” Chaos, Solitons and Fractals, vol. 39, no. 4, pp. 2002-2011, 2009. · Zbl 1197.93109 · doi:10.1016/j.chaos.2007.06.061
[17] B. Chen, X. Liu, and S. Tong, “Adaptive fuzzy approach to control unified chaotic systems,” Chaos, Solitons and Fractals, vol. 34, no. 4, pp. 1180-1187, 2007. · Zbl 1142.93356 · doi:10.1016/j.chaos.2006.04.035
[18] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller. I, II,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2, pp. 404-435, 1990. · Zbl 0707.93037 · doi:10.1109/21.52552
[19] L. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 807-814, 1992. · doi:10.1109/72.159070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.