×

Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. (English) Zbl 1206.35082


MSC:

35J10 Schrödinger operator, Schrödinger equation
35J50 Variational methods for elliptic systems
35J60 Nonlinear elliptic equations
35J47 Second-order elliptic systems
35B09 Positive solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1007/s00032-008-0094-z · Zbl 1181.35257
[2] DOI: 10.1142/S021919970800282X · Zbl 1188.35171
[3] Bahri A., Rev. Mat. Iberoam. 6 pp 1–
[4] DOI: 10.1142/S0129055X02001168 · Zbl 1037.35075
[5] Benci V., Topol. Methods Nonlinear Anal. 11 pp 283–
[6] DOI: 10.1007/BF01942059 · Zbl 0478.49035
[7] DOI: 10.1142/S0218202599000439 · Zbl 0956.81097
[8] DOI: 10.1016/0362-546X(90)90152-7 · Zbl 0729.35049
[9] DOI: 10.1017/S030821050002134X · Zbl 0928.35048
[10] DOI: 10.1080/03605309208820878 · Zbl 0767.35065
[11] Cerami G., J. Differential Equations · Zbl 1327.35084
[12] Coclite G. M., Commun. Appl. Anal. 7 pp 417–
[13] DOI: 10.1007/s00030-006-4037-5 · Zbl 1128.35382
[14] DOI: 10.1017/S030821050000353X · Zbl 1064.35182
[15] DOI: 10.1007/s00526-005-0342-9 · Zbl 1207.35129
[16] DOI: 10.1137/S0036141004442793 · Zbl 1096.35017
[17] D’Avenia P., Adv. Nonlinear Stud. 2 pp 177–
[18] Ianni I., Adv. Nonlinear Stud. 8 pp 573–
[19] Ianni I., Math. Models Methods Appl. Sci.
[20] Ianni I., Math. Models Methods Appl. Sci.
[21] DOI: 10.1016/0001-8708(77)90108-6 · Zbl 0938.81568
[22] DOI: 10.1007/BF01205672 · Zbl 0618.35111
[23] DOI: 10.1007/978-3-7091-6961-2
[24] DOI: 10.1016/0022-1236(90)90002-3 · Zbl 0786.35059
[25] DOI: 10.1142/S0218202505003939 · Zbl 1074.81023
[26] DOI: 10.1016/j.jfa.2006.04.005 · Zbl 1136.35037
[27] DOI: 10.1023/B:JOSS.0000003109.97208.53 · Zbl 1060.82039
[28] DOI: 10.1103/PhysRev.81.385 · Zbl 0042.23202
[29] Wang L., Trans. Amer. Math. Soc. 361 pp 1189–
[30] DOI: 10.1016/j.jfa.2009.12.008 · Zbl 1209.53028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.