×

zbMATH — the first resource for mathematics

Unsteady non-similarity boundary-layer flows caused by an impulsively stretching flat sheet. (English) Zbl 1206.35208
Summary: The unsteady non-similarity boundary-layer flows caused by an impulsively stretching flat sheet have been investigated. The partial differential equations governing the flows have been solved analytically by means of an analytic technique for strongly non-linear problems, namely the homotopy analysis method (HAM). This analytic approach gives us the convergent series solution uniformly valid for all dimensionless time in the whole spatial region \(0\leq x<\infty \) and \(0\leq y<\infty \). To the best of our knowledge, such a kind of series solution has never been obtained. The skin friction coefficient and the boundary-layer thickness are also analyzed for different dimensionless time \(\tau \).

MSC:
35Q35 PDEs in connection with fluid mechanics
35C20 Asymptotic expansions of solutions to PDEs
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sakiadis, B.C., Boundary-layer behavior on continuous solid surfaces. II. the boundary-layer on a continuous flat surface, Aiche j., Aiche j., 7, 221-225, (1961)
[2] Crane, I.J., Flow past a stretching plate, Z. angew. math. phys., 21, 56, 1-37, (1970)
[3] Gupta, P.S.; Gupta, A.S., Heat and mass transfer on a stretching sheet with suction and blowing, Can. J. chem. eng., 55, 744-746, (1977)
[4] Carragher, P.; Crane, I.J., Heat transfer on a continuous stretching sheet, Z. angew. math. mech., 62, 564-565, (1982)
[5] Danberg, J.E.; Fansler, K.S., A nonsimilar moving wall boundary-layer problem, Quart. appl. math., 34, 305-309, (1976) · Zbl 0359.76039
[6] Chakrabarti, A.; Gupta, A.S., Hydromagnetic flow and heat transfer over a stretching sheet, Quart. appl. math., 37, 73-78, (1979) · Zbl 0402.76012
[7] Vajravelu, K., Hydromagnetic flow and heat transfer over a continuous moving porous, flat surface, Acta mech., 64, 179-185, (1986) · Zbl 0614.76114
[8] Dutta, B.K., Heat transfer from a stretching sheet with uniform suction and blowing, Acta mech., 78, 255-262, (1986) · Zbl 0687.76097
[9] Lee, S.L.; Tsai, J.S., Cooling of a continuous moving sheet of finit thickness in the presence of natural convection, Int. J. heat mass transfer, 33, 457-464, (1990)
[10] Wanous, K.J.; Sparrow, E.M., Heat transfer for flow longitudinal to a cylinder with surface mass transfer, J. heat transf. ASME. ser. C, 87, 1, 317-319, (1965) · Zbl 0134.21202
[11] Catherall, D.; Stewartson, Williams., Viscous flow past a flat plate with uniform injection, Proc. R. soc. A., 284, 370-396, (1965) · Zbl 0142.43702
[12] Sparrow, E.M.; Quack, H.; Boerner, C.J., Local non-similarity boundary layer solutions, J. aiaa, 8, 11, 1936-1942, (1970) · Zbl 0219.76032
[13] Sparrow, E.M.; Yu, H.S., Local non-similarity thermal boundary-layer solutions, J. heat transf. ASME, 328-334, (1971)
[14] Massoudi, M., Local non-similarity solutions for the flow of a non-Newtonian fluid over a wedge, Internat. J. non-linear mech., 36, 961-976, (2001) · Zbl 1345.76007
[15] Brunone, B.; Karney, B.; Mecarelli, M.; Ferrante, M., Velocity profiles and unsteady pipe friction in transient flow, J. water resour. plann. manage., 126, 236-244, (2000)
[16] Stewartson, K., On the impulsive motion of a flat plate in a viscous fluid (part I), Quart. J. mech., 4, 182-198, (1951) · Zbl 0043.19101
[17] Stewartson, K., On the impulsive motion of a flat plate in a viscous fluid (part II), Quart. J. mech. appl. math., 22, 143-152, (1973) · Zbl 0295.76020
[18] Hall, M.G., The boundary layer over an impulsively started flat plate, Proc. R. soc. A., 310, 401-414, (1969) · Zbl 0182.28403
[19] Dennis, S.C.R., The motion of a viscous fluid past an impulsively started semi-infinite flat plate, J. inst. math. appl., 10, 105-117, (1972) · Zbl 0267.76025
[20] Watkins, C.B., Heat transfer in the boundary layer over an impulsively started flat plate, J. heat transfer, 97, 282-484, (1975)
[21] Seshadri, R.; Sreeshylan, N.; Nath, G., Unsteady mixed convection flow in the stagnation region of a heated vertical plate due to impulsive motion, Int. J. heat mass transfer, 45, 1345-1352, (2002) · Zbl 1121.76394
[22] Anwar, O.B.; Bakier, A.Y.; Prasad, V.R.; Zueco, J.; Ghosh, S.K., Nonsimilar laminar steady electrically-conducting forced convection liquid metal boundary layer flow with induced magnetic field effects, Int. J. therm. sci., (2008)
[23] Eswara, A.T.; Nath, G., Unsteady forced convection laminar boundary layer flow over a moving longitudinal cylinder, Acta mech., 93, 13-28, (1992) · Zbl 0825.76736
[24] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
[25] Liao, S.J., Beyond perturbation: introduction to the homotopy analysis method, (2003), Chapman and Hall, CRC Press Boca Raton
[26] Nayfeh, A.H., Perturbation methods, (2000), John Wiley and Sons New York
[27] Lyapunov, A.M., General problem on stability of motion, (1992), Taylor and Francis London, (English Translation, Original Work Published 1892) · Zbl 0786.70001
[28] Karmishin, A.V.; Zhukov, A.I.; Kolosov, V.G., Methods of dynamics calculation and testing for thin-walled structures, (1990), Mashinostroyenie Moscow, (in Russian)
[29] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer Academic Publishers Boston, London · Zbl 0802.65122
[30] Liao, S.J., A uniformaly valid analytic solution of 2D viscous flow past a semi-infinite flat plate, J. fluid mech., 385, 101-128, (1999) · Zbl 0931.76017
[31] Liao, S.J., On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet, J. fluid mech., 488, 189-212, (2003) · Zbl 1063.76671
[32] Liao, S.J.; Pop, I., Explicit analytic solution for similarity boundary layer equations, Int. J. heat mass transfer, 47, 1, 75-85, (2004) · Zbl 1045.76008
[33] Yamashita, M.; Yabushita, K.; Tsuboi, K., An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J. phys. A., 40, 8403-8416, (2007) · Zbl 1331.70041
[34] Bouremel, Y., Explicit series solution for the glauert-jet problem by means of the homotopy analysis method, Commun. nonlinear sci. numer. simul., 12, 5, 714-724, (2007) · Zbl 1115.76065
[35] Abbasbandy, S., The application of the homotopy analysis method to solve a generalized hirota – satsuma coupled KdV equation, Phys. lett. A, 361, 478-483, (2007) · Zbl 1273.65156
[36] Hayat, T.; Sajid, M., Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int. J. heat mass transfer, 50, 75-84, (2007) · Zbl 1104.80006
[37] Allan, F.M., Derivation of the Adomian decomposition method using the homotopy analysis method, Appl. math. comput., 190, 6-14, (2007) · Zbl 1125.65063
[38] Sajid, M.; Hayat, T.; Asghar, S., On the analytic solution of the steady flow of a fourth grade fluid, Phys. lett. A, 355, 18-26, (2006)
[39] Zhu, S.P., A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield, Anziam j., 47, 477-494, (2006) · Zbl 1147.91336
[40] Zhu, S.P., An exact and explicit solution for the valuation of American put options, Quant. finance, 6, 229-242, (2006) · Zbl 1136.91468
[41] Liao, S.J., A general approach to get series solutions of non-similarity boundary-layer flows, Commun. nonlinear sci. numer. simul., (2008)
[42] Andersson, H.I., MHD flow of a viscous fluid past a stretching surface, Acta mech., 95, 227-230, (1992) · Zbl 0753.76192
[43] Liao, S.J., Series solutions of unsteady boundary-layer flows over a stretching flat plate, Stud. appl. math., 117, 3, 2529-2539, (2006) · Zbl 1189.76142
[44] Xu, H.; Pop, I., Homotopy analysis of unsteady boundary-layer flow started impulsivley from rest along a symmetric wedge, J. appl. math. mech., 88, 6, 507-514, (2008) · Zbl 1138.76034
[45] Liao, S.J., Notes on the homotopy analysis method: some definitions and theorems, Commun. nonlinear sci. numer. simul., 14, 983-997, (2009) · Zbl 1221.65126
[46] Schlichting, H.; Gersten, K., Boundary layer theory, (2000), Springer Berlin
[47] Williams, J.C.; Rhyne, T.H., Boundary layer development on a wedge impulsively set into motion, SIAM J. appl. math., 38, 215-224, (1980) · Zbl 0443.76039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.