×

zbMATH — the first resource for mathematics

Computing solutions to a forced KdV equation. (English) Zbl 1206.35222
Summary: A special forced Korteweg-de Vries (KdV) equation is considered. This equation is established by recent studies as a simple mathematical model of describing the physics of a shallow layer of fluid subject to external forcing. It serves as an analytical model of tsunami generation by submarine landslides. The bilinear form for this equation is obtained with the aid of Hirota’s method. Some of its one-, two- and three-soliton as well as breather-type soliton solutions and other interesting solutions are derived.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35C08 Soliton solutions
35-04 Software, source code, etc. for problems pertaining to partial differential equations
Software:
Mathematica; Maple
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pelinovsky, E., Submarine landslides and tsunamis, (2003), Kluwer Academic Publisher Netherlands
[2] Clarke, S.R.; Grimshaw, R., Resonantly generated internal waves in a contraction, Journal of fluid mechanics, 274, 139-161, (1994) · Zbl 0814.76024
[3] Clarke, S.R.; Grimshaw, R., Weakly nonlinear internal wave fronts trapped in contractions, Journal of fluid mechanics, 415, 323-345, (2000) · Zbl 0956.76015
[4] Zhao, Jx.; Guo, Bl., Analytical solutions to forced KdV equation, Communications in theoretical physics, 52, 279-283, (2009)
[5] A. Nuseir, Symbolic computation of exact solutions of nonlinear partial differential equations using direct methods, Ph.D. Thesis, Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, May 1995. Web site: http://inside.mines.edu/ whereman/papers/NuseirPhDThesis.pdf.
[6] Hirota, R., The direct method in soliton theory, (2004), Cambridge University Press London
[7] Scott, M., The nonlinear universe, (2007), Springer
[8] Salas, A.H., Exact solutions to mkdv equation with variable coefficients, Applied mathematics and computation, 216, 10, 2792-2798, (2010) · Zbl 1195.35270
[9] Salas, A.H., Computing exact solutions to a generalized Lax seventh-order forced KdV equation (kdv7), Applied mathematics and computation, 216, 8, 2333-2338, (2010) · Zbl 1194.35387
[10] Salas, A.H.; Gómez, C.A., Computing exact solutions for some fifth KdV equations with forcing term, Applied mathematics and computation, 204, 257-260, (2008) · Zbl 1160.35526
[11] Salas, A.H.; Gómez, C.A., Exact solutions for a third-order KdV equation with variable coefficients and forcing term, Mathematical problems in engineering, 2009, (2009), Article ID 737928, 13 pages · Zbl 1188.35168
[12] Salas, A.H., Symbolic computation of solutions for a forced Burgers equation, Applied mathematics and computation, 216, 1, 18-26, (2010) · Zbl 1185.35238
[13] Salas, A.H., Exact solutions to coupled sine-Gordon equation, Nonlinear analysis: real world applications, 11, 5, 3930-3935, (2010) · Zbl 1201.35067
[14] Salas, A.H.; Gómez, C.A., Application of the cole – hopf transformation for finding exact solutions for several forms of the seventh-order KdV equation (kdv7), Mathematical problems in engineering, 2010, (2010), Article ID 194329, 14 pages · Zbl 1191.35236
[15] Salas, A.H., Exact solutions for the general fifth KdV equation by the exp function method, Applied mathematics and computation, 205, 1, 291-297, (2008) · Zbl 1160.35525
[16] Salas, A.H.; Gómez, C.A., Computing exact solutions to a generalized lax – sawada – kotera – ito seventh-order KdV equation, Mathematical problems in engineering, 2010, (2010), Article ID 524567, 7 pages · Zbl 1207.35259
[17] Gómez, C.A.; Salas, A.H., Exact solutions to kdv6 equation by using a new approach of the projective Riccati equation method, Mathematical problems in engineering, 2010, (2010), Article ID 797084, 10 pages · Zbl 1207.35255
[18] Gómez, C.A.; Salas, A.H., The cole – hopf transformation and improved tanh – coth method applied to new integrable system (kdv6), Applied mathematics and computation, 204, 2, 957-962, (2008) · Zbl 1157.65457
[19] Salas, A.H.; Gómez, C.A.; Castillo, J.E., New abundant solutions for the Burgers equation, Computers and mathematics with applications, 58, 3, 514-520, (2009) · Zbl 1189.35289
[20] Gómez, C.A.; Salas, A.H., The generalized tanh – coth method to special types of the fifth-order KdV equation, Applied mathematics and computation, 203, 2, 873-880, (2008) · Zbl 1154.65364
[21] Salas, A.H.; Gómez, C.A.; Escobar, J.G., Exact solutions for the general fifth – order KdV equation by the extended tanh method, Journal of mathematical sciences: advances and applications, 1, 2, 305-310, (2008) · Zbl 1179.65132
[22] Gómez, C.A.; Salas, A.H., Exact solutions for a new integrable system (kdv6), Journal of mathematical sciences: advances and applications, 1, 2, 401-413, (2008) · Zbl 1182.35064
[23] Salas, A.H.; Gómez, C.A., A practical approach to solve coupled systems of nonlinear PDE’s, Journal of mathematical sciences: advances and applications, 3, 1, 101-107, (2009) · Zbl 1179.65131
[24] Gómez, C.A.; Salas, A.H., Solutions for a class of fifth-order nonlinear partial differential system, Journal of mathematical sciences: advances and applications, 3, 1, 121-128, (2009) · Zbl 1182.35063
[25] Salas, A.H., New solutions to korteweg – de Vries (KdV) equation by the Riccati equation expansion method, International journal of applied mathematics (IJAM), 22, 1169-1177, (2009) · Zbl 1193.35198
[26] Gómez, C.A.; Salas, A.H., Special forms of the fifth-order KdV equation with new periodic and soliton solutions, Applied mathematics and computation, 189, 1066-1077, (2007) · Zbl 1122.65393
[27] C.A. Gómez, A.H. Salas, New exact solutions for the combined sinh – cosh-Gordon equation, in: Lecturas Matemáticas, Sociedad Colombiana de Matemáticas, Santafé de Bogotá, Colombia, vol. 27 (Especial), 2006, pp. 87-93.
[28] C.A. Gómez, A.H. Salas, Exact solutions for a reaction – diffusion equation by using the generalized tanh method, Scientia et Technica, Universidad Tecnológica de Pereira, Risaralda-Colombia, vol. 13, No. 035, 2007, pp. 409-410.
[29] Gómez, C.A.; Salas, A.H., Exact solutions for the generalized BBM equation with variable coefficients, Mathematical problems in engineering, 2010, (2010), Article ID 498249, 10 pages · Zbl 1191.65163
[30] A.H. Salas, J.E. Castillo, J.G. Escobar, About the seventh-order Kaup-Kupershmidt equation and its solutions, http://arxiv.org/abs/0809.2865, 2008.
[31] Salas, A.H.; Gómez, C.A.; Castillo, J.E., New solutions for the modified generalized degasperis – procesi equation, Applied mathematics and computation, 215, 7, 2608-2615, (2009) · Zbl 1180.35447
[32] A.H. Salas, Some exact solutions for the Caudrey-Dodd-Gibbon equation, http://arxiv.org/0805.2969, 2008.
[33] Salas, A., Some solutions for a type of generalized sawada – kotera equation, Applied mathematics and computation, 196, 2, 812-817, (2008) · Zbl 1132.35461
[34] A.H. Salas, C.A. Gómez, El software Mathematica en la búsqueda de soluciones exactas de ecuaciones diferenciales no lineales en derivadas parciales mediante el uso de la ecuación de Riccati, Memorias del Primer Seminario Internacional de Tecnologias en Educación Matemática, Universidad Pedagógica Nacional, Santafé de Bogotá, Colombia, 1, 2005, pp. 379-387.
[35] Salas, A.H.; Gómez, C.A.; Palomá, L.L., Travelling wave solutions to the reduced Ostrovsky equation, International journal of applied mathematics (IJAM), 23, 249-256, (2010) · Zbl 1201.35071
[36] Salas, A.H., Symbolic computation of exact solutions to KdV equation, Canadian applied mathematics quarterly, 16, 4, (2008) · Zbl 1200.35270
[37] Salas, A.H.; Gómez, C.A.; Castillo, J.E., Symbolic computation of solutions for the general fifth-order KdV equation, International journal of nonlinear science, 9, 4, 394-401, (2010) · Zbl 1394.35086
[38] Gómez, C.A.; Salas, A.H., A generalized Riccati method to solve nlpdes, Far east journal of applied mathematics, 40, 2, 89-175, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.